
Some Results on

Fast Correlation Attacks

Fredrik Jönsson

Ph.D. Thesis, 24 May, 2002

Fredrik Jönsson
Department of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
e-mail: fredrik.jonsson@it.lth.se
http://www.it.lth.se/fredrikj

c Fredrik Jönsson, 2002
Printed in Sweden
KFS AB, 2002

ISRN: LUTEDX/TEIT-02/1020-SE

ISBN: 91-7167-024-6

Abstract

This thesis presents new results on fast correlation attacks on stream ciphers.
In particular, fast correlation attacks on stream ciphers containing linear shift
registers with an arbitrary number of taps, are considered.

A general introduction to stream ciphers and correlation attacks is given.
The introduction also presents standard properties of linear feedback shift
registers and Boolean functions.

Three di�erent algorithms for fast correlation attacks are presented. The
�rst algorithm transforms a part of the code stemming from the LFSR se-
quence into a convolutional code, and decodes the convolutional code using
the Viterbi algorithm. A theoretical analysis for the algorithm is performed,
using a random coding bound for convolutional codes. This algorithm is then
modi�ed by using Turbo code techniques. The third algorithm is based on a
method to recover multivariate linear polynomials.

An overview and a comparison of recently proposed algorithms for fast
correlations attacks, is given.

The LILI-128 keystream generator, a recent stream cipher proposal, is
attacked by a fast correlation attack.

Several stream ciphers working over an extension �eld have been pro-
posed in the last few years. Most algorithms for fast correlation attacks are
described over the binary alphabet. An algorithm is presented that general-
izes previous work to an attack over any �eld.

This thesis also propose a new algorithm for decoding a general linear
code. This decoding problem have several applications in cryptology, such as
the McEliece public key cryptosystem, the Stern identi�cation scheme, and
also in correlation attacks.

i

ii Abstract

Contents

Abstract i

Preface vii

1 Introduction 1
1.1 An Introduction to Cryptography 2
1.2 An Introduction to Cryptanalysis 5
1.3 Outline of the Thesis . 7

2 Stream Ciphers 9
2.1 Introduction to Stream Ciphers 10
2.2 Linear Feedback Shift Registers 13
2.3 Boolean Functions . 15
2.4 Some Keystream Generators 18
2.5 Other Stream Ciphers . 19
2.6 Cryptanalysis of Stream Ciphers 20
2.7 Summary . 22

3 Correlation Attacks and Fast Correlation Attacks 23
3.1 Correlation Attacks . 24
3.2 Correlation Attacks as a Decoding Problem 26
3.3 Fast Correlation Attacks . 27
3.4 Improved Fast Correlation Attacks 29
3.5 Summary . 30

iii

iv Contents

4 An Algorithm Based on Convolutional Codes 33

4.1 Fast Correlation Attacks Based on Convolutional Codes . . . 34
4.2 Theoretical Analysis . 39
4.3 Simulation Results . 43
4.4 Example . 46
4.5 Summary . 47

5 An Algorithm Using Turbo Code Techniques 49

5.1 A Basic Algorithm Using One Constituent Code 50
5.2 Description of an Algorithm Based on Turbo Code Techniques 54
5.3 Simulation Results . 61
5.4 Variant Based on Parallel Decoding 62
5.5 Summary . 63

6 An Algorithm Based on Reconstruction of Linear Polynomi-
als 65

6.1 Preliminaries and Model . 66
6.2 Learning Polynomials with Queries 67
6.3 Fast Correlation Attacks Based on Algorithms for Learning

Polynomials . 68
6.4 Simulation Results . 73
6.5 Theoretical Analysis . 75
6.6 A Sequential Algorithm . 77
6.7 Summary . 80

7 A Comparison with Other Proposed Algorithms 81

7.1 Model for the Correlation Attacks 82
7.2 The Algorithm by Canteaut and Trabbia 82
7.3 The algorithm by Chebyzhov, Johansson, and Smeets 83
7.4 The algorithm by Mihaljevi¢, Fossorier, and Imai 84
7.5 The Algorithm by Chose, Joux, and Mittel 85
7.6 Comparisons Between Di�erent Algorithms 86
7.7 Summary . 90

8 Correlation Attack on LILI-128 91

8.1 Description of LILI-128 . 92
8.2 Correlation Attacks on Nonlinear Filter Generators 93
8.3 Correlation Attack on LILI-128 94
8.4 Numerical Result . 98
8.5 Summary . 99

Contents v

9 Correlation Attacks over Extension Fields 101
9.1 Model of the Attack . 102
9.2 Algorithm Description . 103
9.3 Theoretical Analysis . 105
9.4 Summary . 107

10 The General Decoding Problem 109
10.1 Notation and Problem Formulation 110
10.2 A Basic Algorithm . 112
10.3 An Improved Algorithm . 115
10.4 Analysis of the Algorithms . 116
10.5 Simulation and Theoretical Results 122
10.6 Some Cryptographic Applications 127
10.7 Summary . 130

11 Concluding Remarks 131

Bibliography 132

vi Contents

Preface

T
his thesis reports on my work as a Ph.D. student at the Department of
Information Technology at Lund University. During this time parts of

the material have been presented at various conferences and in journals.
Parts of the material have appeared in the following papers:

I T. Johansson and F. Jönsson, �Improved fast correlation attacks on
stream ciphers via convolutional codes�, Advances in Cryptology � EU-

ROCRYPT '99, Prague, Czech Republic, LNCS 1592, Springer-Verlag,
pp. 347�362, 1999.

I T. Johansson and F. Jönsson, �Fast correlation attacks based on turbo
code techniques�, Advances in Cryptology � CRYPTO '99, Santa Bar-
bara, USA, LNCS 1666, Springer-Verlag, pp. 181�197, 1999.

I T. Johansson and F. Jönsson, �Fast correlation attacks through re-
construction of linear polynomials�, Advances in Cryptology � CRY-

PTO 2000, Santa Barbara, USA, LNCS 1880, Springer-Verlag, pp. 300�
315, 2000.

I F. Jönsson and T. Johansson, �A fast correlation attack on LILI-128�,
Information Processing Letters, Elsevier Science, vol. 81, pp. 127�132,
2002.

I T. Johansson and F. Jönsson, �On the complexity of some crypto-
graphic problems based on the general decoding problem �, to appear
in IEEE Transaction on Information Theory, 2002.

vii

viii Preface

I T. Johansson and F. Jönsson, �Theoretical analysis of a correlation
attack based on convolutional codes�, to appear in IEEE Transaction

on Information Theory, 2002.

Parts of the material have also appeared as abstract in the following
conference procedings:

I T. Johansson and F. Jönsson, �On the complexity of some crypto-
graphic problems based on the general decoding problem�, Proceedings
of 1998 IEEE International Symposium on Information Theory, Cam-
bridge, Mass., USA, p. 442, 1998.

I F. Jönsson and T. Johansson, �Theoretical analysis of a correlation
attack based on convolutional codes�, Proceedings of 2000 IEEE In-

ternational Symposium on Information Theory, Sorrento, Italy, p. 212,
2000.

I F. Jönsson and T. Johansson, �Correlation attacks on stream ciphers
over GF(2n)�, Proceedings of 2001 IEEE International Symposium on

Information Theory, Washington, D.C., USA, p. 140, 2001.

Acknowledgments

I would like to thank some persons without whose support this thesis
would not have been possible.

First of all, Thomas Johansson, my supervisor, whose help, encourage-
ment and patience helped me through the di�cult moments.

Then, friends and colleagues at the Department of Information Technol-
ogy for making it such an inspiring environment to work in. Especially, my
fellow collegues in the crypto group, Patrik Ekdahl and Enes Pasalic, for
discussions about research and life in general, and also for proof-reading of
parts of this thesis. Here, I would also like to thank Stefan Höst for all help
with LATEXrelated issues.

Finally, I would like to thank my family, for always supporting me in my
work. Especially, my wife Patricia, and our children Emelie and Hampus, for
their love and for giving me the best moments in life.

Fredrik Jönsson

This work was supported by the Swedish Foundation for Strategic Research

under the Personal Computing and Communication Grant.

1
Introduction

T
oday information is often transmitted over digital transmission links and
networks. Most of these networks consist of �xed media wires such as

copper cables and optical �bres. In the last few years, technology has made
it possible also to build wireless networks. Several standards for short-range
radio data communication have been developed. These standards o�er both
mobility and high-speed communication.

A radio channel has some characteristics that need to be taken into ac-
count when discussing the security of a communication system. The radio
channel is more vulnerable to eavesdropping and jamming compared to �xed
media channels. In a mobile network, the terminals often have low power
requirements.

When information is transmitted over an open channel we must take
precautions to protect the data. The message that is transmitted on the
channel should only be readable for the intended receivers. A receiver with
a received message should also be able to verify that the message was sent
by the claimed sender and that it has not been tampered with during the
transmission.

The security issues above, amongst others, are studied in the area of cryp-
tology. Cryptology is the study of mathematical techniques related to aspects
of information security. Cryptology involves both the design of cryptosys-
tems, called cryptography, and security analysis, called cryptanalysis.

The main topic of this thesis is named correlation attacks on stream
ciphers. Stream ciphers is a class of cryptosystems for con�dentiality, that
is, to ensure that the information is kept private to the authorized users.
Con�dentiality is also called secrecy or privacy. Stream ciphers have many
properties that make them suitable in mobile environments.

1

2 1. Introduction

A correlation attack is a general method for attacking stream ciphers. For
many stream ciphers, correlation attacks have given very e�cient attacks.

This introductory chapter is organized as follows. Section 1.1 contains
a deeper introduction to cryptography. Furthermore, in Section 1.1 a more
formal de�nition of a cryptosystem for con�dentiality is given. Some basic
de�nitions of cryptanalysis is given in Section 1.2. Finally, in Section 1.3 an
outline of the thesis is given.

1.1 An Introduction to Cryptography

The history of cryptology is long and there are several fascinating stories to
tell. Di�erent systems for encrypting messages have been used by govern-
ments and the military to prevent national or military secrets to be revealed
by enemies. One of the most famous cipher systems is Enigma, used by Ger-
many in the World War II. It has been argued that when Enigma was broken
by the allied, the outcome of the war was changed. Two books that describes
classical cryptosystems in a non-technical fashion are The Codebreakers by
Kahn [48] and The Code Book by Singh [87].

The open scienti�c study of cryptology started around World War II. One
of the �rst and most celebrated scienti�c papers in the area of cryptology
was written by Claude E. Shannon [80]. In [80] Shannon used information
theory to give a theoretical foundation of cryptology. From this pioneering
work, cryptology as a science has grown. Cryptology uses ideas not only
from information theory but also from other �elds such as, computer science,
probability theory, number theory and abstract algebra.

The traditional way of using cryptography is for con�dentiality. A model
of a cryptosystem used for privacy is illustrated in Figure 1.1. The cryp-
tographic model in Figure 1.1 can be described in the following way. Alice
wants to send a private message m to Bob. The message is taken from a set
of possible messages or (plaintexts), denoted byM. Since the eavesdropper,
here called Eve, can listen to the communication, Alice needs to encrypt the
message to keep it private. The two users, Alice and Bob, share a secret key
K, where K is taken from the set of possible keys, K, called the keyspace.
For each K 2 K, there is an encryption function, denoted by EK , that maps
a message m 2 M into a ciphertext c 2 C, where C is the set of possible
ciphertexts, i.e., c = EK(m). The ciphertext c is then transmitted over the
insecure channel. The key K also speci�es a decryption function DK , where
the decryption function is chosen such that m = DK(EK(m)) for all possible
keys K and messages m. Bob, who has the same key as Alice, can retrieve
the plaintext m after receiving the ciphertext c by applying the decryption
function m = DK(c).

1.1. An introduction to cryptography 3

plaintext
m

ciphertext

c = EK(m) m = DK(c)

m̂

estimate

Alice Bob

Eve

Encryption Decryption

Attack

Kkey

Figure 1.1: Model of a classic cryptosystem

Since Eve does not know the secret key she cannot use the correct de-
cryption function to get the plaintext m. What she can do, however, is to
mount an attack and try to estimate the plaintext without knowing the key.
It is important to note that we assume that Eve knows all properties of the
cryptosystem except the actual key,K, that was used to encrypt the message.

As an example of a classical cryptosystem we describe the Vigenère cipher.
The message m = m0;m1; : : : and the ciphertext c = c0; c1; : : : are both se-
quences of letters from the English alphabet, i.e., mi; ci 2 fA;B; : : : ; Zg.
The key K is a sequence of letters from the English alphabet of length
k, K = K1;K2; : : : ;Kk. To encrypt a message, the message and the key
are transformed to integer sequences by the transformation, A $ 0; B $
1; : : : ; Z $ 25. Denote the integer sequence corresponding to the message
and the key by m0 and K0, respectively. The sequences m0 and K0 are then
used to calculate a new sequence c0 = c01; c

0
2 : : :, where

c0i = m0
i +K 0

i mod k mod 26; i = 0; 1; 2; : : : :

From the sequence c0 the ciphertext c is given by the same transformation
that was used to transform the message to the integer sequence m0.

4 1. Introduction

Example 1.1: We use a Vigenère cipher to encrypt the message m =
TOBEORNOTTOBE. Let the key be K = HAMLET . First, the message
is transformed into the sequencem0 = 19; 14; 1; 4; 14; 17; 13; 14; 19; 19; 14; 1; 4,
and the key is transformed into K0 = 7; 0; 12; 11; 4; 19. The sequence c0 is
then calculated, and we get c0 = 0; 14; 13; 15; 18; 10; 20; 14; 5; 4; 18; 20; 11. Fi-
nally, we get the ciphertext c = AONPSKUOFESUL. �

In the classical model of cryptography as illustrated in Figure 1.1, Alice
and Bob share the same key. This is usually called symmetric-key encryption.
In [24] W. Di�e and M. E. Hellman proposed another model for encryption
using two separate keys, one for Alice and one for Bob. The elegant property
of this model is that the encryption key used by Alice does not have to be
kept secret. Since the encryption key can be publicly known, such a system
is called a public-key cryptosystem. The decryption key, used by Bob, still
has to be private and known only to Bob.

The security of public-key cryptosystems relies on the existence of one-
way functions and trapdoor one-way functions.

De�nition 1.1: A function f is called a one-way function if it is compu-
tationally easy to compute y = f(x) for all x but for almost all y it is
computationally infeasible to compute the inverse x = f�1(y). �

Formally, one should also provide de�nitions of the concepts computationally
easy and computationally infeasible, mentioned in the de�nition. However,
for our treatment the intuitive meaning is enough. It is not possible to
use a one-way function directly for encryption. The receiver Bob has to
have an e�cient decryption function. Thus we need a trapdoor one-way
function.

De�nition 1.2: A function f is called a trapdoor one-way function if it is a
one-way function with the additional property that the inverse is easy to com-
pute if we have knowledge of some extra information, called the trapdoor. �

A public-key cryptosystem can be described in the following way. Assume
that Bob wants to set up a public-key cryptosystem such that Alice can send
a private message to Bob. Bob choose a trapdoor one-way function, denoted
by Ee, and transmits it to Alice over the insecure channel. Since Bob know
the trapdoor, he can also �nd the inverse function, denoted by Dd, that is
kept private by Bob. The function Ee is then used as the encryption function.
As before, letM be the set of possible plaintexts and C be the set of possible
ciphertexts. Alice can then encrypt a message m 2 M as c = Ee(m). Bob

1.2. An introduction to cryptanalysis 5

knows the inverse function and can decrypt the ciphertext c as m = Dd(c).
Due to the one-way property of Ee, an eavesdropper cannot calculate the
plaintext m, even if both Ee and c were observed.

The �rst public-key cryptosystem was the RSA cryptosystem by Rivest,
Shamir, and Adleman [76]. The trapdoor one-way function used in the RSA
cryptosystem is based on the di�culty of factoring large integers. Since
then, several other public-key cryptosystems have been proposed. However,
all public-key cryptosystems used in practice today are much slower than
modern symmetric-key cryptosystems, which make them less suitable for
encrypting large amounts of plaintext.

The description of cryptology in this section has focused on privacy, i.e.,
methods to make sure that a message can only be read by authorized users.
There are also a lot of other subjects in cryptology and a brief description of
some other subjects will be made. Assume that we have received a message
that is claimed to have been sent from Alice. One question we can ask, is
if this message is correct and has not been tampered with by an opponent
during the transmission. Cryptographic solutions to make sure that a mes-
sage has not been altered during transmission is usually called data integrity.
Another question is how we can be sure that it actually was Alice that trans-
mitted this message. This is called data origin authentication. There may
also be a need for entity authentication, where an entity, or user, can identify
itself to other users.

For a more thorough treatment of di�erent subjects in cryptology, di�er-
ent textbooks are available, see for instance [65, 78, 90].

1.2 An Introduction to Cryptanalysis

In Section 1.1 di�erent cryptosystems were discussed. A natural question
to ask is how secure those systems are. If a weakness has been found in a
cryptosystem, we say that the cryptosystem is broken. It is hard to give a
precise de�nition for when a cryptosystem is broken. The de�nition of broken
will depend on what kind of cryptosystem that has been used, and also on
the method used to break it. A de�nition that often is used for symmetric-
key cryptosystems is the the cryptosystem is considered to be broken if we
can �nd the key or the plaintext faster than by an exhaustive key search.
However, other de�nitions can also be considered.

The discussion above leads us into cryptanalysis, the study of the security
of cryptographic primitives and functions. When discussing the security of
cryptosystems we usually distinguish between unconditionally and condition-
ally secure cryptosystems. A unconditionally secure cryptosystem cannot be
broken, even with in�nite computational resources. The security of a con-
ditionally secure cryptosystem relies on some assumption of the opponent's

6 1. Introduction

computing power.
Ideally, we would like to have cryptosystems that are unconditional se-

cure. In [80] Shannon used information theory to analyze unconditional
security of cryptosystems. One example of an unconditionally secure cryp-
tosystem is the one-time pad.

De�nition 1.3: The one-time pad is a cryptosystem whereM = C = K =
F
n
2 . The key K = K1;K2; : : : ;Kn is randomly chosen and may never be
reused. A message m = m1;m2; : : : ;mn is encrypted into the ciphertext
c = c1; c2; : : : ; cn, by calculating

ci = mi + ki 1 6 i 6 n:

�

To set up a one-time pad cryptosystem, we need to transmit a key that is at
least as long as the plaintext over a secure channel. Then we could instead
transmit the plaintext directly over the secure channel. However, such a
system might be useful in the case where we have access to a secure channel
only in a small period of time. Then we can use this time period to send a
key over the channel. This transmitted key can the be used at a later time
to communicate over an insecure channel.

From the discussion above we conclude that in most cases an uncondition-
ally secure cryptosystem is impractical. Thus, one must rely on cryptosys-
tems that are conditionally secure. For some cryptosystems one can prove
that breaking the cipher is equivalent to solving a computational problem
that is supposed to be hard. Examples of such problems are factoring large
integers and solving the discrete logarithm problem. This kind of arguments
for the security of a cryptosystem is called provable security.

For most of the symmetric-key cryptosystems one must rely on a much
weaker de�nition of conditionally secure cryptosystems. The security of a
cipher is given as the complexity, or number of operations, of the currently
best known attack. For ciphers with such security assumptions there is much
research ongoing for improving the best known attacks. A typical example of
such research is improvements of fast correlation attacks on stream ciphers.

The di�erent attacks that can be mounted on a cryptosystem can be
divided into di�erent classes depending on the power of the attacker. Four
of the di�erent classes of attacks are the following.

ciphertext-only This is the worst case for the cryptanalyst. In ciphertext-
only attacks the cryptanalyst tries to recover the plaintext or the key,
when he observes only the ciphertext.

1.3. Outline of the thesis 7

known-plaintext The aim of a known plaintext attack is to deduce the key,
when the cryptanalyst knows some plaintext and the corresponding
ciphertext.

chosen-plaintext Like a known plaintext attack, the aim of a chosen plain-
text attack is to recover the key. In this case the cryptanalyst can
choose any plaintext and gets the corresponding ciphertext.

chosen-ciphertext This case has similarities with chosen plaintext attacks.
The di�erence is that we assume that the cryptanalyst have access to
the decryption unit and can decrypt any ciphertext.

The �nal topic to be discussed in this introductory chapter is the aim of
the attack. The most basic aim of an attack is to recover the key from the
given ciphertext and eventually some plaintext. This is called a key recovery
attack. Another common type of attack do not try to recover the key, but
instead it directly uses the observed information to recognize the plaintext
that was encrypted, or statistical properties of the plaintext.

1.3 Outline of the Thesis

The remaining parts of this thesis are organized as follows. In Chapter 2 an
introduction to design and analysis of stream ciphers is given. Linear feed-
back shift registers, LFSRs, and Boolean functions are two common building
blocks of stream ciphers. These two building blocks are de�ned, and some
important properties are given. Chapter 2 also describes some stream cipher
proposals, and construction methods.

One of the most e�cient types of attacks on stream ciphers are correlation
attacks. The principle of correlation attacks is to recover the initial state of
one LFSR independently of the other LFSRs in the stream cipher. Fast
correlation attacks are improvements of fast correlation attacks, where the
initial state is found faster than exhaustive search over the entire state space.
Fast correlation attacks are also the main subject of this thesis. Chapter 3
will give an introduction to correlation attacks. A correlation attack is often
modelled as a decoding problem. This model is also introduced in Chapter 3.

A fast correlation attack can be modelled as an e�cient algorithm for the
problem of decoding a received vector to the closest codeword in a general
code. In Chapter 4 it is shown how fast correlation attacks can be developed
from the problem of decoding a convolutional code. For convolutional codes
we can use the Viterbi algorithm to decode e�ciently. By using results from
convolutional coding it is also possible to derive theoretical results on the
performance of the attack.

Turbo codes have proved to give very good performance results in coding
theory. Turbo codes are constructed through parallel concatenation of several

8 1. Introduction

component codes, where each component code is a convolutional code. Turbo
codes are decoded by the BCJR algorithm, which is a decoding algorithm
that calculates the a posteriori probabilities of the information symbols. In
Chapter 5 we use techniques from turbo codes to build fast correlation at-
tacks.

The main disadvantage with the Viterbi algorithm and the BCJR al-
gorithm is their memory requirements. One wants to �nd algorithms for
correlation attacks that have the same performance as the algorithms based
on convolutional codes and turbo codes, but have much smaller memory com-
plexity. In Chapter 6 we present such an algorithm based on the problem of
reconstructing a multivariate linear polynomial given noisy observations of
points on the polynomial.

Several other proposals for fast correlation attacks have recently been
proposed by other authors. In Chapter 7 we shortly review some of them.
We also compare the performance of di�erent algorithms for fast correlation
attacks.

For some of the proposals there exist theoretical results for the perfor-
mance. In Chapter 8 we show the importance of such results by an analysis
of LILI-128, a recent stream cipher proposal. This chapter also presents some
other results that can be interesting for attacks on certain stream ciphers.

To construct an extremely fast stream cipher one can use LFSRs over
an extension �eld. The size of the extension �eld is chosen to match the
word length of computers and processors. However, all of the attacks above
are presented over binary �eld. In Chapter 9 we develop a model for fast
correlation attacks over an extension �eld.

In Chapter 10 we leave the fast correlation attacks, and consider instead
what we call the general decoding problem. This problem has several crypto-
graphic applications. One of these applications is in fact correlation attacks.
A new algorithm for the general decoding problem is proposed in this chapter.

Finally, in Chapter 11 we give some �nal remarks and conclusions. The
most important contributions of this thesis are summarized.

2
Stream Ciphers

I
n Section 1.1, cryptosystems for con�dentiality were introduced. They were
divided into symmetric-key and public-key cryptosystems. Symmetric-key

primitives can further be divided into block ciphers and stream ciphers. In
a block cipher, we break up the message to encrypt into blocks of a �xed
length. The message is then encrypted one block at a time. There exist
several block cipher proposals and standards that are used in practice. For
an overview of some of them, see [65, Chapter 7].

Stream ciphers, on the other hand, encrypt each message symbol individ-
ually with a time-varying function. Stream ciphers have several properties
that make them suitable for use in telecommunication applications. Stream
ciphers are in general fast and have low hardware complexity. They also have
limited error propagation, and since each symbol is encrypted individually
there is no need for a large bu�er.

This introductory chapter to stream cipher is organized as follows. In
Section 2.1 the basic principles of stream ciphers are given. Several stream
ciphers are based on linear feedback shift registers, LFSRs. Some properties
of LFSRs that are important for analysis of stream ciphers are given in
Section 2.2. Nonlinear Boolean functions can be used to destroy the linearity
of the sequences generated by LFSRs. In Section 2.3 an introduction to
Boolean functions are given. Some construction methods for LFSR based
stream ciphers are given in Section 2.4. Section 2.4 also presents some LFSR
based stream cipher that have been proposed. There also exist proposals of
stream ciphers that are not based on LFSRs. A discussion of such stream
ciphers is given in Section 2.5. In Section 2.6 an overview of di�erent methods
for attacking stream ciphers is given.

9

10 2. Stream ciphers

2.1 Introduction to Stream Ciphers

In this section some basic principles of stream ciphers will be presented.
First we start by giving a de�nition of stream ciphers. LetM be the set of
possible plaintext symbols, C be the set of possible ciphertext symbols, Z be
the set of possible keystream symbols, and let K be the set of possible keys.
Furthermore, let m = m1;m2; : : : be a plaintext sequence that we are going
to encrypt. The stream cipher contains a keystream generator that produces
a pseudorandom sequence, called the keystream, z = z1; z2; : : :, where zi 2 Z
for i > 1. In general, the ith symbol in the keystream, zi, is a function of
the key K 2 K and the previous plaintext symbols m1;m2; : : : ;mi�1, i.e.,
zi = fi(K;m1;m2; : : : ;mi�1). The keystream together with an encryption
function, ezi(m), are used to encrypt the message m symbol by symbol, as

ci = ezi(mi); i = 1; 2; : : : ;

where ci, zi, and mi are the ith symbols in the ciphertext, keystream, and
plaintext sequence, respectively. To decrypt, the receiver also produces the
same keystream sequence and decrypt with the keystream and a decryption
function. Often, the plaintext, the ciphertext, and the keystream sequence
are all sequences of binary digits, that isM = C = Z = F2 .

Depending on the structure of the keystream generator we can divide
stream ciphers into two categories, synchronous and self-synchronizing.

De�nition 2.1: In a synchronous stream cipher, the keystream is gener-
ated independently of the plaintext and the ciphertext. �

A synchronous stream cipher can be represented by a �nite state machine,
as illustrated in Figure 2.1. Let the state of the keystream generator at time
i be denoted by �i. The next state �i+1 is then determined by a next state
function f , which takes the current state, �i, and the key, K, as input, i.e.,

�i+1 = f(�i;K):

Then, the keystream symbol zi is produced as a function of the current state
and the key, denote this function by g,

zi = g(�i;K):

The keyK will also determine the initial state �0 of the keystream generator.
Since the keystream from a synchronous keystream generator neither de-

pends on the plaintext, nor on the ciphertext, there is no error propagation.
I.e., if a certain symbol in the ciphertext has been corrupted by transmission
error, the rest of the ciphertext will not be a�ected.

2.1. Introduction to stream ciphers 11

�i

f

g
zi

K

Figure 2.1: The keystream generator of a synchronous stream
cipher as a �nite state machine.

To be able to decrypt correctly the receiver has to be in perfect syn-
chronization with the sender. If synchronization is lost the decryption will
not work correctly and the information is lost. Thus, there is a need for
mechanisms for detecting lost synchronization and for re-initialization.

Due to the synchronization property, synchronous stream ciphers are vul-
nerable to active attacks, where an adversary can insert or delete symbols
to the ciphertext sequence. It will also make it possible for an adversary
to change some of the ciphertext symbols and still create a valid ciphertext
sequence. Thus, we need to use additional techniques to guarantee message
authentication.

One of the most common types of synchronous stream cipher is the binary
additive stream cipher. A binary additive stream cipher is a synchronous
stream cipher where the plaintext, ciphertext, and keystream all are binary
sequences, and furthermore, the encryption function is XOR, i.e.,

ci = mi + zi;

see Figure 2.2.
As mentioned previously in this section, another type of stream ciphers

is the self-synchronizing stream ciphers.

De�nition 2.2: A self-synchronizing or asynchronous stream cipher is a
stream cipher where the keystream is generated as a function of the key, K,
and at most t previous ciphertext symbols. �

As for synchronous stream ciphers we can de�ne a state �i also for a self-
synchronizing stream cipher. Here the state is taken as the t previous cipher-

12 2. Stream ciphers

keystream
generator

m1;m2; : : : c1; c2; : : :

z1; z2; : : :

Figure 2.2: Principle of binary additive stream ciphers

�i

g

ezi
mi

K

zi

ci

Figure 2.3: Principle of self-synchronizing stream ciphers.

text symbols,
�i = (ci�1; ci�2; : : : ; ci�t):

The ith keystream symbol, zi, is then generated as a function, denoted by g,
of the initial state and the key,

zi = g(�i;K):

From the de�nition of the state we observe that we need to have an initial
state de�ned by a initial value for i < 0. This initial value may be public.
The principle of self-synchronizing stream ciphers is illustrated in Figure 2.3.

Since the state depends only on the last t ciphertext symbols, the key-
stream will automatically be re-synchronized after a limited time, if some
ciphertext symbols are lost during transmission. If a single error occurs on
the channel, the decryption of the next t ciphertext symbols will be a�ected.
Thus, the error propagation is worse for self-synchronizing stream ciphers

2.2. Linear feedback shift registers 13

cl cl�1 c2 c1

un�l un�l+1 un�2 un�1

Figure 2.4: General form of a linear feedback shift register.

compared with synchronous stream ciphers. The self-synchronization prop-
erty will also make it harder to detect insertion or deletion of false ciphertext
digits by an active adversary. Thus, there is a need for additional methods
to guarantee message authentication.

There exists several general methods for construction of stream ciphers.
One common method is to use a block cipher in di�erent feedback modes,
see [65, Section 7.2.2]. In fact, this is the most common way of construct-
ing self-synchronizing stream ciphers. For synchronous stream ciphers other
constructions are also common. Many synchronous keystream generators
that are based on linear feedback shift registers have been proposed. Before
we describe some stream cipher proposals, we introduce some concepts from
linear feedback shift registers and Boolean functions.

2.2 Linear Feedback Shift Registers

A common component in keystream generators is a linear feedback shift

register, LFSR. A linear feedback shift register produces a sequence, u =
u0; u1; : : :, satisfying the linear recurrence function,

un =

lX
j=1

cjun�j ; n = l; l+ 1; : : : ;

where l is the length of the LFSR, and ui 2 Fq , i > 1. The general form of a
linear feedback shift register is illustrated in Figure 2.4. A LFSR consists of l
delay elements, where each delay element, also called stage, can store an ele-
ment, or digit, in Fq . The l stages, (un�l; un�l+1; : : : ; un�1), is together called
the state of the shift register. Each feedback coe�cient cj , j = 1; : : : ; l is an
element in Fq . Using the feedback coe�cients, we de�ne the feedback polyno-
mial, or connection polynomial, to be g(x) = 1�c1x�c2x

2�cl�1x
l�1�clx

l.

14 2. Stream ciphers

As an alternative to the feedback polynomial one can use the characteris-

tic polynomial, f(x) = xl � c1x
l�1 � c2x

l�1 � � � � � cl�1x � cl. The �rst L
output symbols, u0; u1; : : : ; ul�1, are initially loaded into the l stages. These
symbols loaded into the LFSR, together form the initial state.

The output sequences from linear feedback shift registers have many in-
teresting properties. For the properties presented here it is assumed that
the feedback polynomial is non-singular, i.e., cl 6= 0. Let u = u0; u1; : : : be
a LFSR output sequence. For each u = u0; u1; : : :, there exists a positive
integer T; called the period, such that ui = ui+T for all i > 0.

De�nition 2.3: The feedback polynomial g(x) is called irreducible if it can-
not be written as the product of two polynomials with coe�cients in Fq and
positive degree. If the root x of an irreducible polynomial g(x) of degree l
is a generator of the multiplicative group of all the non-zero elements of Fql ;
g(x) is called a primitive polynomial. �

For a LFSR with a primitive feedback polynomial we have the following
theorem that we state without a proof [35].

Theorem 2.1: Consider a LFSR of length l and feedback polynomial g(x),
where g(x) is a primitive polynomial of degree l over Fq . Then each of the
ql � 1 non-zero initial states of the LFSR produces a sequence with period
ql � 1. �

A LFSR with a primitive feedback polynomial is called a maximum-length
LFSR. One can also show that the output sequence from maximum-length
LFSRs has many nice statistical properties that are desirable in a keystream
generator, provided that the LFSR is not initialized with all zeroes [65].

Another interesting property of linear feedback shift registers is that they
can be used to generate any sequence of �nite length. Assume that we have
a given sequence, denoted by un, of length n, un = u0; u1; : : : ; un�1. Since
we know that there is at least one LFSR that can generate un, we would
like to �nd the shortest LFSR that can generate un. We do not care what
comes after the n symbols. To calculate the shortest LFSR we can use the
Berlekamp-Massey algorithm [59]. If the sequence length is n, the complexity
of �nding the shortest LFSR using the Berlekamp-Massey algorithm is O(n2).
The length of the shortest LFSR that can generate a given sequence, un, of
length n, is called the linear complexity of un, denoted by L(un). If the
sequence is the all-zero sequence, un = 0; 0; : : :, the linear complexity is
de�ned to be zero.

The main drawback with LFSR sequences is that if we are given a se-
quence of L consecutive output symbols, then, due to the linearity, we can

2.3. Boolean functions 15

calculate the output symbol at an arbitrary time instance. Hence, one cannot
use a maximum-length LFSR directly as a keystream generator. Instead one
needs to combine several LFSRs in di�erent ways, to destroy the linearity
and get a sequence with good random properties and a large period.

A standard method to produce binary random-like sequences from LFSR
sequences is to combine the output of several binary LFSRs by a nonlinear
function f with some desired properties. Here f is a Boolean function in n
variables. The purpose is to destroy the linearity of the LFSR sequences and
hence provide the resulting sequence with a large linear complexity.

2.3 Boolean Functions

A Boolean function, f(x), takes a binary vector x = (x1; x2; : : : ; xn), xi 2 F2
1 6 i 6 n, as input and outputs one bit, i.e.,

f : Fn2 ! F2 :

Boolean functions are used in many di�erent binary keystream generators
based on LFSRs. Their purpose in the keystream generators is often to
destroy the linearity introduced by the LFSRs. A Boolean function f(x)
can uniquely be expressed in algebraic normal form. I.e., there are unique
constants a0; a1; : : : ; an; a12; : : : ; a12���n 2 F2 such that

f(x1; x2 : : : ; xn) =a0 + a1x1 + : : :+ anxn

+ a12x1x2 + a13x1x3 + : : :+ a12���nx1x2 � � �xn;

where addition and multiplication are in F2 . If the number of variables in
the Boolean function is small, a truth table is often used. A truth table lists
the functions output value for all possible inputs. As an example we give the
truth table of the Boolean function

f(x1; x2; x3) = x1 + x1x2 + x2x3

in Table 2.1. In the cryptographic applications there are several properties of
Boolean functions that are interesting to investigate. For a Boolean function
we say that a product of m variables is an m-th order product. The �rst
order products are usually called the linear terms.

De�nition 2.4: The algebraic degree, of simply degree, of a Boolean func-
tion f(x) is de�ned to be the number of variables in the highest order product
of f(x), when f(x) is written in algebraic normal form. The algebraic degree
of f(x) is denoted by deg(f). �

16 2. Stream ciphers

x1 x2 x3 f(x1; x2; x3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2.1: The truth table of the Boolean function f(x1; x2; x3) =
x1 + x1x2 + x2x3.

An n variable Boolean function f(x) is balanced if the output column in the
truth table contains an equal number of 0's and 1's. Alternatively, f(x) is
balanced if P (f(x) = 0) = P (f(x) = 0) = 1

2 , when x is chosen uniformly in
F
n
2 .
Let Fn be the set of all Boolean functions in n variables, and let An be

the set of all a�ne functions in n variables. The Hamming distance between
two functions f(x); g(x) 2 Fn is de�ned as,

dH (f; g) = jfxjf(x) 6= g(x);x 2 Fn2 gj:

De�nition 2.5: We de�ne the nonlinearity of a Boolean function f(x),
denoted by Nf , as the Hamming distance to the nearest a�ne function, i.e.,

Nf = min
g2An

dH(f; g):

�

In most of the cryptographic applications, we would like that the cor-
relation between an individual input variable and the output variable is
small.

De�nition 2.6: An n variable Boolean function is de�ned to be t-th order
correlation immune, if for any t-tuple of independent identically distributed
binary random variables Xi1 ; Xi2 ; : : : ; Xit , we have

I(Xi1 ; Xi2 ; : : : ; Xit ;Y) = 0; 1 6 i1 < i2 < � � � < im 6 n;

2.3. Boolean functions 17

where Y = f(X1; X2; : : : ; Xn), and I(X ;Y) denotes the mutual informa-
tion [22]. �

A Boolean function that is both balanced and t-th order correlation immune
is called a t-resilient function.

The properties above are often investigated through the Walsh trans-
form.

De�nition 2.7: For a Boolean function, f : Fn2 ! F, the Walsh transform

of f(x) is de�ned to be the real-valued function F (!) over the vector space
F
n
2 given by

F (!) =
X
x

(�1)f(x)�!�x;

where the dot product of vectors x and ! is de�ned as x � ! = x1!1 + : : :+
xn!n. �

The Hamming distance between a Boolean function f(x) and an a�ne
function g(x) = ! � x + b, where b 2 F2 , can be calculated with the Walsh
transform as

dH(f; g) = 2n�1 �
(�1)bF (!)

2
:

Thus, the nonlinearity of f(x) can be obtained from the Walsh transform as

Nf = 2n�1 �
1

2
max
!
jF (!)j:

In [37] the following theorem to express correlation immunity in terms of
Walsh transforms was proven.

Theorem 2.2: A Boolean function is t-th order correlation immune if and
only if

F(!) = 0; 8! 2 Fn2 j1 6 wH(!) 6 t;

where wH(!) is the Hamming weight of !, i.e., the number of nonzero posi-
tions in !. �

A Boolean function f(x) is balanced if and only if F(0) = 0. Hence, we see
that the Walsh transform is an important tool when investigating properties
of Boolean functions.

18 2. Stream ciphers

2.4 Some Keystream Generators

In this section methods for construction of LFSR-based stream ciphers are
presented. The LFSR-based stream ciphers can be divided into di�erent
basic design principles. The basic designs can then be combined to get more
complex and hopefully more secure stream ciphers. Three basic construction
methods are, Nonlinear combination generators, Nonlinear �lter generators,
and Clock-controlled generators.

In a nonlinear combination generator several linear feedback shift registers
are used in parallel. Denote the number of LFSRs by n. The keystream
sequence is generated by a nonlinear Boolean function, f , of the output of
the n shift registers. The principle of a combination generator is illustrated
in Figure 2.5.

LFSR n

LFSR 2

LFSR 1

��
��
f

�

PPq

@
@R

-

u
(n)
i

u
(2)
i

u
(1)
i

zi

...
...

Figure 2.5: Principle of nonlinear combination generators.

To get a secure nonlinear combination generator we need to �nd a func-
tion that is correlation immune and have high nonlinearity. As shown by
Siegenthaler [81], there is a tradeo� between these properties. To circumvent
this tradeo�, the memoryless function f can be replaced by a �nite state
machine with memory [63]. A recent stream cipher proposal that is based
on this principle is the ciphering function E0 used in Bluetooth [83].

Instead of using several LFSRs one can use one single LFSR and generate
the keystream as a nonlinear function f of the stages of the LFSR. Such a
keystream generator is called a nonlinear �lter generator. The function f is
then called the �ltering function. The principle of nonlinear �lter generators
is illustrated in Figure 2.6. Also for nonlinear �lter generators we can replace
the memoryless �ltering function with a �nite state machine. One �lter
generator with a �nite state machine that has been proposed recently is the
SNOW cipher [25]. To improve the encryption speed in software, operations
in SNOW are de�ned over F232 .

The third basic method of constructing keystream generators is by clock-
controlled generators. In a clock-controlled keystream generator, the output

2.5. Other stream ciphers 19

LFSR

f

zi

Figure 2.6: Principle of nonlinear �lter generators.

of one or several LFSRs controls the clocking of other shift registers. Two
examples of clock controlled keystream generators are the shrinking genera-
tor [19] and the alternating step generator [36]. The self-shrinking genera-
tor [64] is a modi�cation of the shrinking generator with only one LFSR. An-
other clock controlled generator that is used in practice is the cipher A5 [6,26],
used in GSM phones.

As mentioned before, it is also possible to combine the basic construction
methods to get more complex generators. A common combination that has
been proposed is to use the stages of a clock-controlled shift register as input
variables to a nonlinear �ltering function. Two proposed families of such
generators are the LILI keystream generators [23,86], and the t-class SOBER
stream ciphers [77].

2.5 Other Stream Ciphers

Several methods for constructing keystream generators using LFSR as inter-
nal components have been given in Section 2.4. In this section we give a brief
overview of generators that are not based on linear feedback shift registers.
Some keystream generators have been proposed that use the same principles
as in Section 2.4 but has replaced the LFSR with another sequence genera-
tor. Two common components that has been proposed as an alternative to
LFSRs are the feedback with carry shift register and the lagged Fibbonacci

generator.
Feedback with carry shift registers, FCSR, were proposed by Klapper and

Goresky [51]. The principle of a FCSR is as follows. In the feedback of the
shift registers the content of the tapped stages are added as integers to the
content of the memory. The least signi�cant bit of the sum is then fed back

20 2. Stream ciphers

to form the new symbol. The remaining higher order bits form the content
of the memory. FCSRs can be analyzed using the algebra over the 2-adic
numbers, instead of the algebra over �nite �elds used to analyze LFSRs [52].

The lagged Fibbonacci generator, proposed by Knuth [54, p. 27] is based
on addition in Zn where n is chosen to match the register size of CPUs. In
the feedback the new symbol is calculated as addition modulus n of some of
the stages of the generator. The lagged Fibbonaci can be implemented fast
in software. However, we can get the same improvement for linear feedback
shift register by using a shift register over a �nite �eld F2n .

There have also been proposed some stream ciphers that are entirely
optimized for software implementations. Their structure have very little in
common with keystream generators based on LFSRs. Hence, we will not give
much attention to these software optimized stream ciphers here. Examples of
such stream ciphers are RC4 and SEAL [20]. RC4 is proprietary, but alleged
descriptions that are output compatible with certi�ed implementations have
been proposed [78].

There also exist stream ciphers that are provably secure conditioned that
certain number theoretic problems are hard, e.g. [8,66]. These stream ciphers
are much slower than LFSR based stream ciphers and software optimized
stream ciphers.

2.6 Cryptanalysis of Stream Ciphers

Most of the analysis that has been performed on synchronous stream ciphers
assume a known-plaintext attack. For synchronous stream ciphers a known-
plaintext attack is equivalent to an attack on the keystream generator with
an observed keystream sequence of a certain length. Assume that the at-
tacker has a message m = (m1;m2; : : : ;mN), which has been encrypted into
the ciphertext c = (c1; c2; : : : ; cN). From this message-ciphertext pair the
keystream can easily be determined. As an example we consider an additive
stream cipher where, ci = mi + zi. Given m and c we can calculate the
keystream z = (z1; z2; : : : ; zN) that was used to encrypt m as zi = mi + ci,
for 1 6 i 6 N . Thus, we might assume that the attacker has observed a
keystream sequence of length N , z = (z1; z2; : : : ; zN).

Known-plaintext attacks on synchronous stream ciphers are divided into
key recovery attacks, where we try to recover the secret key from the ob-
served keystream, and distinguishing attacks, where we try to distinguish the
observed keystream from a truly random sequence.

To show the importance that a stream cipher withstands a distinguishing
attack we use the following example.

2.6. Cryptanalysis of stream ciphers 21

Example 2.1: Assume that we have a database where a user can retrieve
di�erent �les that are stored in the database. Furthermore, assume that the
di�erent �les have the same size and that they are mutually uncorrelated.
For simplicity we can assume that the database contains only two �les. De-
note these two �les by m(1) and m(2), respectively. Since it should not be
possible for a user to see what �les another users downloads the information
is encrypted by a stream cipher.

Alice downloads a �le and a ciphertext c is transmitted from the database
to Alice. Bob who also can listen to the channel receives the ciphertext. Since
Bob does not know Alice's secret key he can not decrypt to �nd out what �le
Alice downloaded. However, if a distinguisher exists he can �nd out what
�le that was transmitted in the following way.

First, Bob starts by downloading the �rst �le m(1). Then he creates a
vector ẑ = m(1)+c, using Alice's ciphertext c. If m(1) was the �le that Alice
downloaded then ẑ = m(1) + c = z, where z is the keystream that was used
to encrypt Alice's message. Otherwise if m(2) was the downloaded �le then
ẑ = m(1) +m(2) + z, which is a random sequence since m(1) and m(2) are
uncorrelated. Hence, by applying the distinguisher to the vector ẑ Bob can
determine whether ẑ is a random sequence, or a sequence generated from the
keystream generator in the stream cipher. �

Distinguishing attacks have been used to attack several recent stream
cipher proposals [18, 27, 58]. One can expect that distinguishing attacks will
be more important in the future, since several distinguishing attacks have
been proposed recently and the theoretical framework has increased.

In a traditionally known-plaintext attack on stream ciphers the attacker
tries to recover the secret key given the observed keystream sequence. These
attacks are called key-recovery attacks. For this setting of the attack there
exists both general methods that are applicable to all synchronous stream
ciphers, and also methods that attacks a certain stream cipher proposal.

One of the most important classes of general attacks on stream ciphers
is correlation attacks. Correlation attacks were �rst proposed by Siegen-
thaler [81]. In [62], Meier and Sta�elbach presented a modi�cation called
fast correlation attack. Subsequently, other algorithms for fast correlation
attacks have also been proposed. Since fast correlation attacks is the ma-
jor subject of this thesis, a deeper introduction to fast correlation attacks is
given in Chapter 3.

Other classes of key-recovery attacks are the linear consistency attack [97]
and the linear syndrome attack [98] proposed by Zeng, Yang, and Rao. For
nonlinear �lter generators with certain properties the inversion attack [33] by
Goli¢ has been shown to be e�cient. Some proposals for divide and conquer
attacks on stream ciphers are given in [84]. For stream ciphers there also

22 2. Stream ciphers

exists general time/memory tradeo� attacks, see [5].
Several attacks on speci�c stream ciphers have also been proposed, see

e.g., [6, 18, 26, 27, 34, 41, 47, 53,58]

2.7 Summary

In this chapter some basic properties of stream ciphers were presented. We
de�ned synchronous, self-synchronizing, and additive stream ciphers. Two
topics that are often used in connection with stream ciphers are LFSRs and
Boolean functions. Many important properties of Boolean functions are most
easily described by the Walsh transform.

There exist several methods and principles to construct stream ciphers.
In this chapter some of these methods were given, along with some stream
ciphers that have been proposed. In this chapter we could only give a brief
introduction to stream ciphers. To study the design of stream ciphers further
see, e.g., [65, Chapter 6].

The chapter ended with a brief introduction to cryptanalysis of stream
ciphers. Most attacks on synchronous stream ciphers assume a known plain-
text scenario. The attacks were divided into distinguishing attacks and key
recovery attacks. The main topic of this thesis is correlation attacks, which is
one of the most important classes of key recovery attacks on stream ciphers.

3
Correlation Attacks and
Fast Correlation Attacks

I
n the previous chapter an introduction to design and analysis of stream
ciphers was given. In this chapter we will continue with cryptanalysis of

stream ciphers and give an introduction to correlation attacks and fast cor-
relation attacks. Correlation attacks is one of the most important general
classes of attacks on LFSR based stream ciphers. The original correlation
attack was proposed by Siegenthaler in [82]. In his attack nonlinear combi-
nation generators were considered. The principle behind correlation attacks
is the following. Assume that an attacker can �nd a correlation between the
output of one of the shift registers in the generator and the keystream. The
attacker can then mount a divide-and-conquer type of attack and try to �nd
the initial state of this LFSR independently of the other LFSRs.

When applying Siegenthaler's correlation attack, an exhaustive search
over all possible initial states of the LFSR is made. In [61, 62] Meier and
Sta�elbach gave two algorithms for fast correlation attacks, called Algo-
rithm A and Algorithm B, respectively, in which it is not necessary to run
through all possible initial states. These algorithms have very good perfor-
mance when the feedback polynomial has low weight, or if a multiple of the
feedback polynomial has low weight and relatively low degree. After this pio-
neering work, lots of research have been made to improve the performance of
fast correlation attacks and also to make fast correlation attacks applicable
to feedback polynomials with arbitrary number of taps.

A brief overview of the initial work by Siegenthaler is given in Section 3.1.
Correlation attacks can also be modelled as a decoding problem. This model
of correlation attacks is introduced in Section 3.2. In Section 3.3 the fast

23

24 3. Correlation attacks and fast correlation attacks

g(x)

LFSR

LFSR

-

-zi

ui

Figure 3.1: A su�cient requirement for a correlation attack,
P (ui = zi) 6= 0:5.

correlation attacks proposed by Meier and Sta�elbach are presented. Some
of the early improvements of fast correlation attacks are given in Section 3.4.

3.1 Correlation Attacks

The original correlation attack was proposed by Siegenthaler [82]. In [82]
the attack was described as a ciphertext only attack. Since a ciphertext only
attack requires that there exists redundancy in the plaintext message, one
usually applies correlation attacks in known plaintext scenarios, where there
are no requirements of redundancy in the message.

Assume that we have observed a keystream sequence, z, of length N ,
z = z1; z2; : : : ; zN . The keystream sequence is generated from a generator
with n di�erent LFSRs. If one can �nd a correlation between the output of
one of the shift registers, called the target LFSR, and the keystream, i.e.,
P (ui = zi) 6= 0:5, where ui is the output of the LFSR and zi is the known
keystream symbol, then one can try to �nd the initial state in a �divide-and-
conquer� type of attack on the target LFSR, see Figure 3.1. Furthermore,
we assume that the feedback polynomial g(x) of the target LFSR is known.
There is no requirement of any further structure in the generator. The only
thing that matters is the fact that we can �nd a correlation.

In Section 2.4 several standard methodologies for destroying the linear
properties of LFSR sequences and produce a keystream sequence with a large
linear complexity were given. One of these methodologies is the nonlinear
combination generator, illustrated in Figure 3.2.

It is worth noticing that for a nonlinear combination generator there
always exists a correlation between the generator output zi and either one
or a set of M LFSR output symbols fu(i1)i ; u

(i2)
i ; : : : ; u

(iM)
i g. It is well known

3.1. Correlation attacks 25

LFSR n

LFSR 2

LFSR 1

��
��
f

�

PPq

@
@R

-

u
(n)
i

u
(2)
i

u
(1)
i

zi

...
...

Figure 3.2: Principle of a nonlinear combination generator

that if f is an (M � 1)-resilient (but not M -resilient) function then there
exists a correlation, which can be expressed in the form

P (zi = u
(i1)
i + u

(i2)
i + � � �+ u

(iM)
i) 6= 0:5:

It is also known that there is a tradeo� between the resiliency and the non-
linearity of f , and hence M must be rather small [81].

Returning to the previously mentioned correlation attacks, the above
overview demonstrates that �nding a low complexity algorithm that suc-
cessfully can use the existing correlation in order to determine a part of the
secret key can be a very e�cient way of attacking such stream ciphers.

The principle of the original attack proposed by Siegenthaler is the fol-
lowing. Assume that the LFSR we consider has length l and that the cor-
relation between the keystream sequence and the LFSR sequence is 1 � p,
where p < 0:5. Here we also assume that the feedback polynomials of the
LFSRs are known. This is di�erent from the setting in [82] were an addi-
tional exhaustive search was made over all primitive polynomials of degree
l.

For a binary LFSR of length l there are 2l possible initial states. For
each possible initial state u0 = (u1; u2; : : : ; ul) the LFSR output sequence
u = (u1; u2; : : : ; uN) is generated. Let � be de�ned as � = N � dH(u; z),
where dH(u; z) is the Hamming distance between u and z, i.e., the number
of positions in which u and z di�er.

There are two hypothesis to be considered.

H1: The guessed initial state is correct.

H0: The guessed initial state is wrong.

Under these two hypothesis, � is binomially distributed with mean value

26 3. Correlation attacks and fast correlation attacks

g(x) - -
-

-

HHHHHHj��
��

��*ui ziU Z

0

1

0

1

p
p

1� p

1� p

LFSR BSC

Figure 3.3: Model for a correlation attack

m�jHi
and variance �2�jHi

, where

m�jH1
= Np; �2�jH1

= Np(1� p); (3.1)

m�jH0
= N

2 ; �2�jH0
=

N

4
: (3.2)

Hence, we see that if we run through all possible initial states, and if N is
large enough, � will with high probability take its largest value when u0 is
the correct initial state.

If a correlation can be found for each of the LFSRs in the generator,
the complexity of �nding the correct key is reduced from

Qn
j=1(2

lj � 1) toPn
j=1(2

lj � 1); where lj is the length of LFSR j and n is the number of shift
registers in the generator. The correlation attack by Siegenthaler can also be
modelled as a decoding problem, as we will show in the next section.

3.2 Correlation Attacks as a Decoding Problem

Correlation attacks, as illustrated in Figure 3.1, are often viewed as a decod-
ing problem, see for instance [15, 61, 62, 71, 82]. Recall that the LFSR has
length l and the set of possible LFSR sequences is denoted by L. Clearly,
jLj = 2l and for a �xed length N the set of all truncated sequences from L is
also a linear [N; l] block code [57], referred to as C. Thus, the LFSR sequence
u = (u1; u2; : : : ; uN) is regarded as a codeword from C and the keystream se-
quence z = (z1; z2; : : : ; zN) is regarded as the received channel output. From
the de�nition of the correlation between ui and zi, we can describe each zi
as the output from the binary symmetric channel, BSC, when ui was trans-
mitted. The correlation probability 1 � p, de�ned by 1 � p = P (ui = zi),
gives p as the crossover probability (error probability) in the BSC. Without
loss of generality we can assume p < 0:5. This is all shown in Figure 3.3.

The cryptanalyst's problem can be formulated as follows. Given a length
N received word z = (z1; z2; : : : zN) as output of the BSC(p), �nd the length

3.3. Fast correlation attacks 27

N codeword from C that was transmitted.
From simple coding arguments [80], it can be shown that the length N

should be at least around N0 = l=(1�h(p)) for unique decoding, where h(p)
is the binary entropy function. If the length of the output sequence N is
modest but allows unique decoding, say N = N0+D, where D is a constant,
the fastest methods for decoding are probabilistic decoding algorithms. This
decoding problem is studied deeper in Chapter 10, where algorithms appli-
cable for this case are given.

3.3 Fast Correlation Attacks

For received sequences of large length fast correlation attacks [61, 62] are
sometimes applicable. By fast correlation attacks we mean attacks that are
signi�cantly faster than exhaustive search over the target LFSR. If exhaustive
search has computational complexity O(2l) then a fast correlation attack
should have computational complexity at most O(2k), where 2k � 2l. In [62]
Meier and Sta�elbach presented two algorithms for fast correlation attacks.
Instead of the exhaustive search as originally suggested in [82], the algorithms
are based on using certain parity check equations created from the feedback
polynomial of the LFSR. The algorithms have two di�erent phases. In the
�rst phase, a set of suitable parity check equations is found. The second phase
uses these parity check equations in a fast decoding algorithm to recover the
transmitted codeword, and hence, the initial state of the LFSR.

Parity check equations in [62] were created in two separate steps. Let
g(x) = 1+ c1x+ c2x

2 + : : :+ clx
l denote the feedback polynomial, and t the

number of taps of the LFSR, i.e., the number of nonzero coe�cients of g(x)
is t + 1. Symbol number i of the LFSR sequence, ui, can then be written
as ui = c1ui�1 + c2ui�2 + : : : + clui�l: Since the weight of g(x) is t + 1,
we get in this way t + 1 di�erent parity check equations for ui. Secondly,
using the fact that g(x)j = g(xj) for j = 2k, parity check equations are also
generated by repeatedly squaring the polynomial g(x). The obtained parity
check equations are then valid in each index position of u. The total number
of parity check equations, denoted m, that can be found in this two steps is

m � (t+ 1) log(
N

2l
);

where log uses base 2 [62].

28 3. Correlation attacks and fast correlation attacks

The parity check equations can be written as

ui + b1 = 0;

ui + b2 = 0;

...

ui + bm = 0;

(3.3)

where each bj is the sum of t di�erent symbols in the LFSR sequence u. If we
substitute the symbols of the LFSR sequence with the observed keystream
symbols in Equations (3.3) we get the following set of expressions,

zi + y1 = L1;

zi + y2 = L2;

...

zi + ym = Lm;

(3.4)

where yj is the sum of t di�erent keystream symbols from the same positions
as the symbols of the LFSR sequence used in bj , and Li 2 F2 , 1 6 i 6 m.

In the second phase, the m parity check equations for each position ui,
1 6 i 6 N is used in a decoding algorithm. If P (zi = ui) = (1� p) = 1=2+ �
the probability s = P (yj = bj) can be calculated [13] as

s = P (yj = bj) =
1

2
+ 2t�1�t: (3.5)

Assume that h out of the m equations in (3.4) hold. Then by using Equa-
tion (3.5) we can calculate the conditional probability [62],

p? = P (zi 6= uijh equations hold)

=
p(1� s)hsm�h

p(1� s)hsm�h + (1� p)(1� s)m�hsh
:

(3.6)

Two di�erent decoding methods was suggested in [61,62]. The algorithms
were called, Algorithm A and Algorithm B, respectively. The algorithm A
is a one pass algorithm were p? is calculated for each observed symbol. The
l positions with highest value of (1 � p?) are then used to �nd the correct
initial state of the LFSR.

Algorithm B, which has received most attention is an iterative algorithm.
In each iteration the conditional probabilities in Equation (3.6) is recalculated
until convergence, or the maximum number of iterations is made. For a
complete description of the decoding methods, see [62].

3.4. Improved fast correlation attacks 29

The algorithms mentioned above work well when the LFSR contains few
taps, but for LFSRs with many taps the algorithms fail. The reason for this
failure is that for LFSRs with many taps each parity check equation gives a
very small average correction and hence many more equations are needed in
order to succeed. Or in other words, the maximum correlation probability
p that the algorithms can handle is much lower if the LFSR has many taps
(e.g. around l=2). Due to the fact that the above attacks require the feedback
polynomial g(x) to have a low weight, one usually refrain from using such
feedback polynomials in stream cipher design.

3.4 Improved Fast Correlation Attacks

After the introduction of fast correlation attacks by Meier and Sta�elbach,
several proposals have been made that improves their initial ideas. In this
section we will present some of the early improvements that were made.
The improvements can be divided into two categories. The methods in the
�rst category are used to �nd more parity check equations, and also to �nd
low weight parity check equations for feedback polynomials with arbitrary
weight. The methods in the second category use more powerful iterative
decoding methods to improve the original result by Meier and Sta�elbach.

One method for �nding parity check equations was suggested by Mihal-
jevi¢ and Goli¢ in [71]. The algorithm proposed in [71] is based on a matrix
representation of the LFSR. Assume that we have observed a keystream of
length N and that the target LFSR has length l and feedback polynomial
g(x) = 1+ c1x+ � � �+ clx

l. Let uN be the state of the LFSR at time N , i.e.,
uN = (uN+1; uN+2; : : : ; uN+l). There exists an l � l matrix A,

A =

0
BBBBB@

0 1 0 0 : : : 0
0 0 1 0 : : : 0

: : :
. . .

. . . : : : : : : : : :
0 : : : : : : 0 0 1
cl cl�1 : : : c3 c2 c1

1
CCCCCA ;

such that the state at time N can be expressed as uN = AjuTN�j . Hence, by
taking all powers of the form Aj , j = 1; : : : ; N we get a set of N parity check
equations all involving uN+1. Keep all orthogonal parity check equations
with weight t. Let mt be the expected number of parity check equations
found in the algorithm. From [71] we have the following result,

mt =
N

l2l
�

�
l

t

�
:

The problem with the method in [71] is that it requires a very large value
of N to �nd su�cient many parity check equations when l is increased. As

30 3. Correlation attacks and fast correlation attacks

an example, assume that we would like to �nd 100 parity check equations of
weight 3 for an LFSR with length 64. To achieve this we need N � 261 bits.
Hence, this method is not practical for large l.

Another method for �nding parity check equations with low weight was
proposed by Chepyzhov and Smeets in [15]. The proposed method is based
on a known problem in coding theory. From Section 3.2 we know that the
LFSR output sequences can be regarded as codeword from an [l; N] linear
code C. There exists a code H such that,

c � hT = 0; 8c 2 C;h 2 H: (3.7)

The code H is called the dual code to C. From (3.7) we see that �nding a
parity check equations with low weight is equivalent to �nding a codeword in
H with low weight. In [15] it was proposed to use information set decoding to
�nd a codeword in H of low weight. Also for this method the computational
complexity will be to high for longer LFSRs.

In [74] Penzhorn proposed a method of �nding low weight parity check
equations using division of polynomials. If g(x) = 1 + c1x + c2x

2 + : : : +
clx

l is the feedback polynomial of an LFSR, i.e., the LFSR output sequence
satis�es un =

Pl
j=1 un�jcj , then by a division algorithm we try to �nd a

polynomial h(x) with low weight such that h(x) � 0 mod g(x). Furthermore,
Penzhorn showed that �nding su�ciently many parity check equations with
weight 3 is not feasible, instead one has to search for weight 4 parity check
equations. The algorithm in [74] has a computational complexity of order
22l=3 for �nding weight 4 parity check equations when the available number
of positions is of the order 2k=3.

All of the methods presented above improve the fast correlation attacks
by searching for more low weight parity check equations. It has also been
proposed the use other iterative decoding methods. These iterative decoding
methods all use the low weight parity check equations of the form found by
the algorithms above. For an overview of some of these iterative decoding
algorithms and their performance, see [17, 28].

3.5 Summary

In this chapter the basic principles of correlations attack were presented. It
was shown that correlation attacks can be viewed as the problem of decoding
a given vector to a codeword from a linear code.

The original correlation attack by Siegenthaler, and the fast correlation
attack by Meier and Sta�elbach were brie�y presented. The chapter also
gave an introduction to some of the early improvements of fast correlation
attacks.

3.5. Summary 31

The methods proposed to �nd low weight parity check equations have too
high complexity to be practical when the length of the LFSR is increased.
Hence, the fast correlation attacks based on low weight parity check decoding
methods are only practical for LFSRs with low weight feedback polynomials.
To �nd fast correlation attacks that are practical also for feedback polyno-
mials of any weight we can try other approaches. In the following chapters
we will look at such proposals.

32 3. Correlation attacks and fast correlation attacks

4
An Algorithm Based on
Convolutional Codes

I
f the fast correlation attacks described in Chapter 3 should be e�cient
it is required that the LFSR has a feedback polynomial with low weight.

The goal of the algorithm presented in this chapter is to achieve a similar
performance and a similar low complexity as the algorithms in Chapter 3,
but for feedback polynomials of arbitrary weight.

The principle of the algorithm is to transform a part of the code C stem-
ming from the LFSR sequence into a convolutional code. The convolutional
code can then be decoded e�ciently using the Viterbi algorithm.

Most of previous results regarding performance of correlation attacks have
been based entirely on simulations. In this chapter, we use random coding
bounds for convolutional codes to give a theoretical analysis of the presented
algorithm. The results from the theoretical derivation are veri�ed by simu-
lations.

The chapter is organized as follows. In Section 4.1 we describe the new
algorithm based on low-rate convolutional codes. This algorithm was origi-
nally proposed at Eurocrypt'99 [44]. The theoretical analysis of the attack is
given in Section 4.2. Section 4.3 presents some simulation results and veri�es
the obtained theoretical results. In Section 4.4 we exemplify the theoretical
results by calculating the complexity for an attack on a combining generator.
Finally, in Section 4.5 we give some conclusions and possible extensions.

33

34 4. An algorithm based on convolutional codes

4.1 Fast Correlation Attacks Based on Convolutional

Codes

The general idea behind the algorithm to be described, is to consider slightly
more advanced decoding algorithms including memory, but which still have
a low decoding complexity. This allows weaker restrictions on the parity
check equations that can be used, leading to many more and more powerful
equations.

As most other algorithms for correlation attacks it has two phases. In the
�rst phase the algorithm transforms a part of the code C stemming from the
LFSR sequences into a convolutional code. The encoder of this convolutional
code is created by �nding suitable parity check equations from C. In the
decoding step the Viterbi algorithm is used for decoding. It is assumed
that the reader is familiar with basic concepts regarding convolutional codes,
see [40, 44].

Let B be a �xed memory size and let R denote the rate. In a convolutional
encoder with memory B and rate R = 1=(m+ 1) the information sequence

u = u0; u1; : : :

is encoded as the code sequence

v = v0;v1; : : : = v
(0)
0 ; v

(1)
0 ; : : : ; v

(m)
0 ; v

(0)
1 ; v

(1)
1 ; : : : ; v

(m)
1 ; : : :

where
vn = ung0 + un�1g1 + : : :+ un�BgB : (4.1)

Here, each gi, 0 6 i 6 B, is a vector of length (m+ 1). The purpose of the
�rst pass of the algorithm is to �nd suitable parity check equations that will
determine the vectors gi; 0 6 i 6 B, de�ning the convolutional code.

Let us start with the linear code C stemming from the LFSR sequences.
From Section 3.2 we know that there is a corresponding l � N generator
matrix, here referred to as GLFSR, such that u = u0GLFSR; where u0 de-
notes the initial state of the LFSR, i.e., u0 = (u1; u2; : : : ; ul). The gen-
erator matrix is furthermore considered to be written in systematic form,
GLFSR =

�
Il Z

�
, where Il is the l � l identity matrix.

We are now interested in �nding parity check equations that involve a
current symbol un, and an arbitrary linear combination of the B previous
symbols un�1; : : : ; un�B, together with at most t other symbols. Clearly, t
should be small and in this description t = 2 or t = 3 are mainly considered.

To �nd these desired equations, start by considering the index position
n = B + 1. Introduce the following notation for the generator matrix,

GLFSR =
�
h1 h2 � � � hN

�
; (4.2)

4.1. Fast correlation attacks based on convolutional codes 35

i.e., hi is the ith column of GLFSR. Thus, the ith LFSR output symbol can
be calculated as ui = u0hi.

Parity check equations for uB+1 with weight t outside the �rst B + 1
positions can then be found by �nding linear combinations of t columns such
their sum is all zero in the last l�B� 1 positions and one in position B+1.
Assume that we have found t columns such that

(hi1 + hi2 + : : :+ hit)
T = (cB ; cB�1; : : : ; c1; 1; 0; 0; : : : ; 0); (4.3)

where each cj , 1 6 j 6 B can take any value. By combining Equation (4.2)
and Equation (4.3) we get the following parity check equation

ui1 + ui2 + : : :+ uit = uB+1 +
BX
j=1

cjuB+1�j : (4.4)

It directly follows from the cyclic structure of the LFSR sequences that Equa-
tion (4.4) is valid for any index position n simply by shifting all the symbols
in time, resulting in

un +
BX
j=1

cjun�j = un�B�1+i1 + un�B�1+i2 + : : :+ un�B�1+it : (4.5)

Assume that the above procedure gives us a set ofm di�erent parity check
equations for LFSR output symbol un, written as

un +
PB

j=1 c
(1)
j un�j = b

(1)
n ;

un +
PB

j=1 c
(2)
j un�j = b

(2)
n ;

...

un +
PB

j=1 c
(m)
j un�j = b

(m)
n ;

(4.6)

where b(k)n =
P6t

j=1 un�B�1+i
(k)
j

, 1 6 k 6 m is the sum of (at most) t positions

in u. I.e., b(k)n is the right-hand side of (4.5) for the kth parity check equation.
Identifying the parity check equations from (4.6) with the described form of
the convolutional code as in (4.1) gives

0
BBB@

g0
g1
...
gB

1
CCCA =

0
BBBBBB@

1 1 1 : : : 1

0 c
(1)
1 c

(2)
1 : : : c

(m)
1

0 c
(1)
2 c

(2)
2 : : : c

(m)
2

...
...

...
. . .

...
0 c

(1)
B c

(2)
B : : : c

(m)
B

1
CCCCCCA ; (4.7)

36 4. An algorithm based on convolutional codes

where we have added the systematic bit v(0)n = un. Thus, we have obtained
a rate R = 1

m+1 convolutional code with memory B.
For the case t = 2 the parity check equations can be found in a very

simple way as follows. A parity check equation with t = 2 is found if two
columns from GLFSR have the same value when restricted to the last l�B�1
entries. Hence, we simply put each column of GLFSR into one of 2l�B�1

di�erent �buckets�, sorted according to the value of the last l�B� 1 entries.
Each pair of columns in each bucket will provide us with one parity check
equation, provided uB+1 is included. For t = 3 we store the columns in the
same way as for t = 2. To �nd a parity check equation we run through all
pair of columns, add them, and look in the bucket corresponding to the last
l �B � 1 entries of the sum.

For larger values of t we can use an algorithm by Chose, Joux, and Mit-
ton [16] to �nd parity check equations. The algorithm in [16] is based on a sort
and match algorithm by Schroeppel and Shamir [79]. The algorithm in [16]
has computational complexity O(Ndt=2e) and memory complexity O(N bt=4c).

For each de�ned codeword symbol v(i)n in the convolutional code one has
an estimate of that symbol from the transmitted sequence z. We refer to this
sequence as the received sequence and denote it by (r1; r2; : : : ; rN), where
ri = (r

(0)
i ; r

(1)
i ; : : : ; r

(m)
i). From the right hand side of (4.6) we have v(k)n =

b
(k)
n , where b(k)n =

P6t
j=1 un�B�1+i

(k)
j

, 1 6 k 6 m. The received sequence is

constructed as r(k)n =
P6t

j=1 zn�B�1+i
(k)
j

, for 1 6 k 6 m and r(0)n = zn. From

the construction of the received sequence we can calculate the probability
that a codesymbol of the convolutional code is correctly received as

P (v(k)n = r(k)n) = P (b(k)n = r(k)n)

= P (

6tX
j=1

u
n�B�1+i

(k)
j

=

6tX
j=1

z
n�B�1+i

(k)
j

): (4.8)

To recover the initial state of the LFSR it is enough to decode l con-
secutive information bits correctly. Optimal decoding (ML-decoding) of the
convolutional code using the Viterbi algorithm can thus be performed. The
channel model used in the decoding phase is a binary symmetric channel,
BSC, with crossover probability de�ned by (4.8). For binary symmetric chan-
nels ML-decoding is equivalent to minimum distance decoding, and hence in
our case, there is no need for �oating point arithmetic when implementing
the Viterbi algorithm.

The original Viterbi algorithm assumes that the convolutional encoder
starts in state 0. However, in this application there is neither a prede�ned
starting state, nor a prede�ned ending state for the trellis corresponding to
the convolutional code. For each possible starting state �B = (s1; s2; : : : ; sB),

4.1. Fast correlation attacks based on convolutional codes 37

let dH(�B ; zB), where zB = (z1; z2; : : : ; zB) and dH(�B ; zB) denotes the
Hamming distance between �B and zB , be the initial metric for that state
when we start the Viterbi algorithm at n = B. Then one runs the Viterbi
algorithm over l information symbols. At depth B + l we search for the
ending state �B+l with minimum metric. The decoder output is then the
information sequence corresponding to the surviving path from one of the
starting states �B to the ending state �B+l with minimum metric. It is
important to note that the decoding algorithm presented here is slightly
improved compared to the decoding algorithm originally proposed in [44].
This concludes the general description and we give a detailed summary of
the algorithm in Figure 4.1.

38 4. An algorithm based on convolutional codes

In: An observed keystream sequence z = (z1; z2; : : : ; zN), the system-
atic l �N generator matrix in the form

GLFSR =
�
h1 h2 : : : hN

�
;

and the algorithm parameters B and t.

1. For l+B +1 6 i1 < i2 < : : : < it 6 N �nd all t-tuples of columns
hi1 ;hi2 ; : : : ;hit such that

(hi1 + hi2 + : : :+ hit)
T = (cB ; cB�1; : : : ; c1; 1; 0; 0; : : : ; 0| {z }

l�B�1

);

where each cj , 1 6 j 6 N , can take any value. Then add

(un�B ; : : : ; un; 0; : : : ; 0) � (hi1 + : : :+ hit) +

6tX
j=1

un�B�1�ij = 0

to the set of parity check equations as in (4.6).

2. From this set, calculate g0;g1; : : : ;gB as in (4.7). Create a received
vector r from z by r

(0)
n = zn and r

(k)
n =

P6t
j=1 zn�B�1+i

(k)
j

, for

1 6 k 6 m, where i(k)1 ; i
(k)
2 ; : : : ; i

(k)
t , 1 6 k 6 m are the indices

determined in step 1.

Decoding part:

3. For each starting state �B , let dH(�B ; zB) be the initial metric.

4. Decode the received sequence r using the Viterbi algorithm from
n = B until n = B+l. Output the estimated information sequence
(ûB+1; ûB+2; : : : ; ûB+l). Finally, calculate the corresponding ini-
tial state of the LFSR.

Figure 4.1: A description of the algorithm for fast correlation
attacks based on convolutional codes.

4.2. Theoretical analysis 39

4.2 Theoretical Analysis

To simplify the theoretical analysis, we consider some small modi�cations
in the algorithm described in the previous section. Firstly, we consider the
convolutional code to be time-varying. This can be achieved by applying a
random permutation to the columns of GLFSR and searching for new parity
check equations for each time index. For a more thorough description we
refer to [43]. Secondly, we exclude the systematic symbol v(0)n = un; and the
rate of our convolutional code is R = 1=m.

The principle of the analysis is the following. We start by calculating the
average number of parity check equations that we will �nd by the proposed
algorithm. This gives us the rate of the convolutional code. Depending on the
value of t we calculate the error probability in an equivalent binary symmetric
channel for the convolutional code. Given the number of equations and the
error probability of the BSC we can use results from convolutional coding
to get a bound on the burst error probability of the convolutional code.
This burst error probability bounds the probability that the proposed attack
fails. Finally, we �x the rate to be R � R0; where R0 is the computational
cuto� rate [40]. This gives us a rate close to capacity and yet a small error
probability. Based on these assumptions, the result of the analysis is the
required initial correlation for given keystream length N; LFSR length l; and
algorithm parameters B and t:

Lemma 4.1: Let m be the number of parity check equations in (4.6) and
let E[m] be the expected value of m. Then,

E[m] �

�
N�l�B

t

�
2l�B

�
N t

t!
2B�l:

�

Proof: The number of di�erent linear combinations of t columns from the
last N � l � B columns of GLFSR is

�
N�l�B

t

�
. Since the rows of GLFSR

is LFSR sequences of length N , the entries gij of GLFSR is approximately
independent identically distributed random variables with, P (gij = 0) = 1=2.
Thus, each of the 2l�B�1 di�erent possible values of the last l�B�1 positions
for each column, hi, of GLFSR have the same probability.

Hence, we get in average
�
N�l�B

t

�
=2l�B�1 linear combinations with all-

zero in the last positions. Among these linear combinations one half depends
on un. Thus,

E[m] �
1

2
�

�
N�l�B

t

�
2l�B�1

=

�
N�l�B

t

�
2l�B

�
N t

t!
2B�l;

where the last approximation is valid if t is small, and N � l +B. �

40 4. An algorithm based on convolutional codes

In the model of a correlation attack presented in Chapter 2, the correla-
tion between the LFSR sequence u and the keystream z is P (ui = zi) = 1�p:
This can be modelled as a binary symmetric channel with error probability
p = 1

2 � Æ.

In our case, we consider an �embedded� convolutional code. Then the re-
ceived symbol r(k)n corresponding to codeword symbol v(k)n is given as the sum
of t keystream symbols, r(k)n =

Pt
j=1 zn�B�1+i

(k)
j

. If the expected number of

equations are much less than the observed length, that is E[m] � N; then
the probability that a position zj appears in more than one equation is small,

and thus, di�erent r(k)n 's can be considered to be independent. Hence, the
error probability in Equation (4.8) can be modelled as a binary symmetric
channel with error probability p0 = 1

2 � �.

Lemma 4.2: Let p = 1
2 �Æ = P (zn 6= un); and p0 = 1

2 � � = P (r
(k)
n 6= v

(k)
n).

Then

� = 2t�1Æt:

�

Proof: We prove by induction. Let t = 1; clearly we have � = Æ: Assume
that the expression is true for t = s � 1. Using Bayes rule we get that
p0 = P (

Ps
j=1 zn�B�1+i

(k)
j

6= v
(k)
n) can be expressed as

p0 = P (
s�1X
j=1

z
n�B�1+i

(k)
j

= v(k)n jzn�B�1+i
(k)
s
6= v(k)n)P (z

n�B�1+i
(k)
s
6= v(k)n)

+ P (

s�1X
j=1

z
n�B�1+i

(k)
j

6= v(k)n jzn�B�1+i
(k)
s

= v(k)n)P (z
n�B�1+i

(k)
s

= v(k)n):

Since the channel is memoryless we get

p0 = P (
s�1X
j=1

z
n�B�1+i

(k)
j

= v(k)n)P (z
n�B�1+i

(k)
s
6= v(k)n)

+ P (

s�1X
j=1

z
n�B�1+i

(k)
j

6= v(k)n)P (z
n�B�1+i

(k)
s

= v(k)n);

4.2. Theoretical analysis 41

and since the lemma holds for t = s� 1 by assumption we get

p0 = (
1

2
+ 2s�2Æs�1)(

1

2
� Æ) + (

1

2
� 2s�2Æs�1)(

1

2
+ Æ)

=
1

2
� 2Æ2s�2Æs�1

=
1

2
� 2s�1Æs:

�

Let PB be the burst error probability [40], i.e., the probability that we do
not decode the convolutional code correctly. To get a bound on the expected
burst error probability, E[PB], for our convolutional code we use the following
result, taken from [40, p. 215]. The average is taken over the ensemble of
all random rate R = 1=m time-varying convolutional codes encoded by a
polynomial generator matrix of memory B:

Lemma 4.3: The expected burst error probability of a rate R = 1=m; time-
varying convolutional code encoded by a polynomial, time-varying generator
matrix of memory B is upper-bounded by

E[PB] 6 c(R)2�R0Bm; 0 6 R < R0;

where R0 is the computational cuto� rate for the BSC, de�ned as

R0 = 1� log(1 + 2
p
p(1� p));

and where

c(R) =
1

2(R0�R)m � 1
:

�

Using the bound for the expected burst error probability we can calculate
when the proposed attack will succeed. Let the correlation probability be
1=2 + Æ, i.e.,

P (ui = zi) = 1=2 + Æ:

The values of Æ for which the attack is successful is given by the following
theorem.

Theorem 4.4: With probability 1 � pe; pe < 1; the proposed attack suc-
ceeds if

Æ >
1

2

4(1 + d) ln 2 � 2l�B�

N�l�B
t

�
! 1

2t

;

42 4. An algorithm based on convolutional codes

where the correlation probability is P (zi = ui) = 1=2 + Æ;

pe 6 l
1

2d � 1
2�(1+d)B;

and d is any �xed positive real number. �

Proof: We assume that the randomly generated code satis�es the bound in
Lemma 4.3, and that R = R0: For a BSC with p = 1=2� �,

R0 = 1� log(1 + 2

r
1

4
� �2):

Since � is very small, we use Taylors formula to getr
1

4
� �2 =

1

2
� �2 � �4 + 2�6 + o(�8):

The cuto� rate can then be written as

R0 = 1� log(2� 2�2 � 2�4 � 4�6 + o(�8)) = � log(1� �2 � �4 � 2�6 + o(�8)):

Using the standard expression for ln(x) we get

log(1� �2 � �4 � 2�6 + o(�8)) =
1

ln 2
(��2 �

3

2
�4 �

10

3
�6 + o(�8));

and

R0 =
1

ln 2
(�2 +

3

2
�4 +

10

3
�6 + o(�8)) =

�2

ln 2
+ o(�4);

for small �: Using Lemma 4.2 we insert � = 2t�1Æt; and R0 can be expressed
as

R0 =
22(t�1)Æ2t

ln 2
+ o(Æ4t):

From Lemma 4.3 we have an expression for the burst error probability
given that R < R0. Ideally we want R to be as close to R0 as possible. This
will, however, make c(R) to increase and we might not get a useful bound
on the error probability. Thus, we need to have a code rate slightly less than
R0, say

1

m
= R =

R0

1 + d
;

where d is a �xed positive real number. By inserting the average number of
equations, E[m]; from Lemma 4.1 and the expression for R0 we get�

N�l�B
t

�
2l�B

>
(d+ 1) ln 2

22(t�1)Æ2t
;

4.3. Simulation results 43

which give us

Æ >
1

2

4(d+ 1) ln 2 � 2l�B�

N�l�B
t

�
! 1

2t

;

The probability that the attack fails is bounded by, pe < l � E[PB]; where

E[PB] 6 c(R)2�R0Bm =
1

2d � 1
2�(1+d)B:

Hence, we get

pe 6 l
1

2d � 1
2�(1+d)B:

�

By using that
�
N�l�B

t

�
< N t=t! we can rewrite Theorem 4.4 as the fol-

lowing corollary.

Corollary 4.5: With probability 1 � pe; pe < 1; the proposed attack suc-
ceeds if

N >
1

4Æ2
(4(1 + d) ln 2 � t!)

1
t � 2

l�B
t ;

where the correlation probability is P (zi = ui) = 1=2 + Æ;

pe 6 l
1

2d � 1
2�(1+d)B;

and d is any �xed positive real number. �

4.3 Simulation Results

In order to verify the theoretical results a large number of simulations were
made. Most of the simulations use a LFSR with length l = 40; and a weight
17 feedback polynomial. The LFSR has the following feedback polynomial,

g(x) = 1 + x+ x3 + x5 + x9 + x11 + x12 + x17 + x19

+x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40:

The algorithm parameter t was chosen to t = 2 and t = 3. The memory
B varied between B = 7 and B = 17. The simulation results are compared
with the theoretical results in Theorem 4.4. In the theoretical results we let
the distance parameter d be d = 0:2. These results are plotted in Figure 4.2
and Figure 4.3, respectively. In these �gures the maximal value of p is plot-
ted when N is varied. The simulation results are based on the suboptimal

44 4. An algorithm based on convolutional codes

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

p

B=10
B=10
B=15
B=15
B=17
B=17

Figure 4.2: Comparison between simulations and theoretical re-
sults for LFSR length l = 40 and t = 2.

decoding method described in Section 4.1. From Figure 4.2 and Figure 4.3
we can see that for large values of the constant B the bound in Theorem 4.4
is rather tight. It is also important to note that one of the conditions for
Theorem 4.4 to hold is that N � m. However, from the simulations we can
see that also in the case when N < m the results from Theorem 4.4 is close
to the actual performance of the algorithm.

We can see in Figure 4.2 that for small B the simulation shows better
performance than one could expect by the results from Theorem 4.4. One
explanation for this behavior is that in these cases we get rather few equations
and the systematic symbol that we exclude in the theoretical analysis has a
bigger impact on the result. We should also note that it is possible to have a
rate larger than R0 and still have a quite low probability of algorithm failure.

From the simulations we can also make a comment regarding the com-
plexity of decoding when the value of the parameter t is varied. Assume that
we have p = 0:39. With t = 2 and N = 100000 we need memory B = 17.
The time for a successful decoding in this case was approximately 90 seconds.

4.3. Simulation results 45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

p

B=7
B=7
B=10
B=10
B=12
B=12

Figure 4.3: Comparison between simulations and theoretical re-
sults for LFSR length l = 40 and t = 3.

With t = 3 we only need B = 7 to get p = 0:39 for N = 100000. In this latter
case the decoding takes approximately 1.5 seconds. Thus, we can conjecture
that it is desirable to increase the value of t. However, due to the complexity
in the precomputation we can not use a too large value of t.

Some simulations were also made for l = 60. The result is tabulated in
Table 4.1. From Table 4.1 we can see that the results in Theorem 4.4 is
rather tight also for l = 60.

46 4. An algorithm based on convolutional codes

N t B pth psim
100 � 106 2 20 0.42 0.43
600 � 103 3 18 0.37 0.38

Table 4.1: Comparison between simulations and theoretical re-
sults for LFSR length l = 60.

4.4 Example

In this section we illustrate the importance of having theoretical results for
the performance of correlation attacks by an example, in which we calculate
the complexity of attacking a combining generator. The principle of a non-
linear �lter generator is to generate the keystream as some nonlinear function
of the output from M LFSRs, see Figure 4.4.

LFSR M

LFSR 2

LFSR 1

��
��
f

�

PPq

@
@R

-

ui

zi

...
...

Figure 4.4: Principle of nonlinear combination generators.

Assume that LFSR 1 has length l = 89, and that there exists a correlation
of size P (zi = ui) = 0:53125. If we let B = 10 and d = 0:1, we can calculate
the required amount of observed keystream symbols for having a successful
attack. From Corollary 4.5 we get N � 235:8 and pe 6 0:6, where we used
Æ = 0:03125.

The decoding complexity of the attack can be calculated as follows. From
Lemma 4.2 the average number of parity check equations is m � 225:5. The
number of states, j�j, in the Viterbi decoder is 2B . If we use ML-decoding
the decoding complexity, denoted by Cdec, can be calculated as

Cdec = l �m � 2B � 242:

The precomputation for this case is approximately 271 table lookups.
Note that the complexity is given as the average number of bit opera-

tions in the decoding phase and the average number of table lookups in the

4.5. Summary 47

precomputation. Thus, for the decoding phase, m bit operations are done
signi�cantly faster than m clock cycles. On the other hand, in the precompu-
tation phase we search for the existence of a certain vector in a large sorted
list of vectors. By using a hash table this can be made almost in constant
time. However, it will still require more than one clock cycle per operation.

4.5 Summary

We have presented a new algorithm for fast correlation attacks. The algo-
rithm is based on low-rate convolutional codes. In a theoretical analysis,
using random coding bounds for convolutional bounds, we derive its per-
formance. The analysis results in a bound which determines the required
number of observed keystream symbols needed in a successful attack. If
we compare the theoretical bound with results obtained by simulations we
observe that the bound is rather tight. Thus we conclude that the results
from the theoretical analysis can be used as a tool for evaluating the security
of stream ciphers based on linear feedback shift registers, where the shift
register length makes simulations impossible.

48 4. An algorithm based on convolutional codes

5
An Algorithm Using Turbo

Code Techniques

I
n the algorithm presented in the previous chapter, decoding a convolu-
tional codes with large memory was a major issue. Since the starting state

of the trellis is unknown, one cannot use low memory decoding algorithms
such as sequential decoding. Instead, decoding with the memory consuming
Viterbi algorithm must be used. For correlations close to 0.5 the rate of the
convolutional code must be extremely low. From Lemma 4.1 we see that for
long shift registers, the memory of the convolutional encoder must be large
if su�ciently many parity check equations should be found. Unfortunately,
due to the memory requirements of the Viterbi algorithm it is not possible to
use too large memory. In fact, what limits the attack in Chapter 4 is not the
computational complexity but rather the memory complexity. To be able to
improve the attack one would like to �nd a method of decreasing the rate of
the convolutional code without increasing the memory.

In coding theory, turbo codes have turned out to be an e�cient cod-
ing/decoding method, which achieve performance close to the Shannon limit.
The basic principle of turbo codes is to use two convolutional codes in paral-
lel with some kind of permutation in between, see [3,4]. Figure 5.1 illustrates
the principle of turbo codes. The information symbols are the input to both
encoders. Before the sequence of information symbols enters the second en-
coder, a permutation � is applied. To decode a turbo code an iterative
decoding algorithm is used. The decoding algorithm is a suboptimal decod-
ing algorithm based on a posteriori probability decoding of the constituent
codes. The memory complexity of the decoding algorithm for turbo codes is
the same as the maximum memory complexity for decoding the constituent

49

50 5. An algorithm using turbo code techniques

Encoder 2

Encoder 1

�

ut
ut

v
(1)
t

v
(2)
t

Figure 5.1: Principle of turbo codes.

codes. Hence, we see that it is possible to decrease the rate without increase
the memory complexity of the decoding algorithm.

This chapter presents a fast correlation attack, which use techniques from
turbo codes to get a code with low rate and reasonable low memory complex-
ity. The code is then decoded by an iterative decoding algorithm, well known
from general decoding techniques of turbo codes. In Section 5.1, the iterative
decoding method for convolutional codes is presented in a basic algorithm
using only one code. In Section 5.2, the idea of several �parallel� codes is
introduced and the main algorithm of this chapter is described. Simulation
results are presented in Section 5.3. In Section 5.4, a parallel decoding version
is proposed, and in Section 5.5 we conclude with some possible extensions.

5.1 A Basic Algorithm Using One Constituent Code

Algorithm B by Meier and Sta�elbach [62] calculates an a posteriori proba-
bility for each symbol in the received sequence and then iteratively tries to
improve these probabilities by recalculating them. The procedure is based
on very simple (memoryless) parity checks. The method of Chapter 4 uses
instead convolutional codes but uses a simple Viterbi decoding procedure on
a small part of the received sequence.

The ideas to be proposed try to combine the best parts of both methods
into a single algorithm. In this section a basic construction is presented.
This basic algorithm uses one convolutional code (Chapter 4 method) and
then applies an APP (a posteriori probability) decoding algorithm in order
to provide an a posteriori probability for each symbol in a certain part of
the received sequence. Optimal APP decoding (also referred to as MAP
decoding) on a convolutional code can be performed by the famous BCJR
algorithm [1], or variations of it. The a posteriori probabilities are then fed
back as a priori probabilities and in this fashion the procedure is iterated

5.1. A basic algorithm using one constituent code 51

until convergence. This is now described in more detail.
The �rst step involves computing parity check equations for a convolu-

tional code with �xed memory B. We follow the procedure of Section 4.1
and compute all parity check equations with t = 2 involving the particular
index position B + 1, i.e., �nd all parity check equations of the form

ui1 + ui2 = uB+1 +
BX
j=1

cjuB+1�j : (5.1)

Parity checks for index position B + 1 + i are then immediately obtained
through a cyclic shift of the original parity checks with i steps, as in (4.5).
We refer to Section 4.1 for a review of the details. Write the m obtained
parity check equations in the form

un +
PB

j=1 c
(1)
j un�j = u

n�B�1+i
(1)
1

+ u
n�B�1+i

(1)
2
;

un +
PB

j=1 c
(2)
j un�j = u

n�B�1+i
(2)
1

+ u
n�B�1+i

(2)
2
;

...

un +
PB

j=1 c
(m)
j un�j = u

n�B�1+i
(m)
1

+ u
n�B�1+i

(m)
2

:

(5.2)

The convolutional code is de�ned by all codeword sequences v,

v = : : : v(0)n v(1)n : : : v(m)
n v

(0)
n+1v

(1)
n+1 : : : v

(m)
n+1 : : : ; n > B; (5.3)

where

v(0)n = un; v(k)n = un +

BX
j=1

c
(k)
j un�j ; 1 � k � m:

The second step is the APP decoding phase. After observing a keystream
sequence z, construct a sequence r acting as a received sequence for the
convolutional code by

r = : : : r(0)n r(1)n : : : r(m)
n r

(0)
n+1r

(1)
n+1 : : : r

(m)
n+1 : : : ; n > B;

where

r(0)n = zn; r(k)n = z
n�B�1+i

(k)
1

+ z
n�B�1+i

(k)
1
; 1 � k � m:

Assume that the correlation between the keystream and the considered LFSR
output sequence is 1� p, i.e., we have P (zn = un) = P (r

(0)
n = v

(0)
n) = 1� p.

From the correlation and the construction of r(k)n we get

P (r(k)n = v(k)n) = (1� p)2 + p2; 1 � k � m:

52 5. An algorithm using turbo code techniques

Basic algorithm
B = 13 B = 14 B = 15
0.20 0.23 0.26

Table 5.1: Maximum p for some di�erent algorithms when N =
40000 and B = 13; 14; 15.

Then decode the constructed sequence r stemming from a codeword v

of the convolutional code using an APP decoding algorithm. The original
BCJR algorithm requires storage of the whole trellis. However, suboptimal
versions of the BCJR algorithm, see [38, 92], remove this problem with a
negligible decrease in performance. This procedure provides us with the a
posteriori probabilities for the information sequence, i.e.,

P (v
(0)
B+1jr); P (v

(0)
B+2jr); : : : ; P (v

(0)
l jr):

Finally, since v(0)B+1 = uB+1; v
(0)
B+2 = uB+2; : : : this information is fed back

as new a priori probabilities for (uB+1; uB+2; : : : ; ul) and the a priori proba-
bilities of the codeword sequence v of the convolutional code is recalculated.
The decoding procedure is performed a second time, and this procedure is
iterated 2�5 times (until convergence). A summary of the algorithm is given
in Figure 5.2.

We end by presenting some simulation results for the basic algorithm in
Table 5.1. We choose to use the same case as tabulated in [44, 71], which is
based on a LFSR with length l = 40; and a weight 17 feedback polynomial.
The performance of the algorithm is approximately the same as the results
for the algorithm using the Viterbi algorithm in Chapter 4. This is what can
be expected since we have the same codes as in Chapter 4.

5.1. A basic algorithm using one constituent code 53

In: The l � N generator matrix GLFSR for the code generated by a
LFSR, the received sequence z, the error probability p, and the
number of iterations I .

1. For each position n, B+1 6 n 6 l, in GLFSR, �nd the set of parity
check equations of the form (5.2) and construct the convolutional
code.

Decoding phase:

2. After receiving z, construct the received sequence r by

r(0)n = zn; r(j)n = z
n�B�1+i

(j)
1

+ z
n�B�1+i

(j)
2
; 1 6 j 6 m:

3. Update
P (v(0)n) = P (un); B + 1 6 n 6 l:

Run the APP decoding algorithm and calculate the a posteriori
probabilities

P (v
(0)
B+1jr); P (v

(0)
B+2jr); : : : ; P (v

(0)
l jr):

Since v(0)n = un, set

P (uB+1) P (v
(0)
B+1jr); : : : ; P (ul) P (v

(0)
l jr):

4. If the number of iterations < I go to 3. Otherwise select the
most probable value for each of the symbols uB+1; uB+2; : : : ; uB+l,
calculate the initial state u0 and check if it is correct.

Figure 5.2: A description of the basic algorithm.

54 5. An algorithm using turbo code techniques

5.2 Description of an Algorithm Based on Turbo Code

Techniques

One of the most revolutionary ideas in coding theory the last decade has
been the introduction of turbo codes. The original turbo code [3] consists
of two convolutional codes, where the information bits are directly fed into
one of them and an interleaved version of the same information bits are
fed into the other convolutional code. The fundamentally new idea was the
proposed decoding scheme, which uses an iterative procedure. Decode the
�rst code using an APP decoding algorithm, which provides a posteriori
probabilities for all information symbols. Use these as a priori information
when decoding the second code using again APP decoding. The obtained a
posteriori probabilities are now used as a priori information when decoding
the �rst code a second time, and the procedure continues in this iterative
fashion. For more details on iterative decoding and decoding of turbo codes,
see, e.g. [38].

Much the same ideas as described above can be applied to our decoding
problem. Instead of using just one �xed convolutional code, as in the basic
algorithm described in Section 5.1, we will show how to �nd and use two or
more di�erent convolutional codes. When we have only one convolutional
code as in Chapter 4 and in Section 5.1 it was su�cient to decode only over
l information symbols. However, in turbo coding it is known that one would
like to have a large interleaver size to get better performance [3]. To be
able to have a larger interleaver size we increase the number of information
symbols to J . In this chapter the value of J is chosen to be J = 10 � B + l.
The di�erent convolutional codes are obtained by randomly permuting the
index positions of the original code in the interval B + 1 : : : J .

A problem arises, however, since we need parity check equations for per-
muted versions of the code C. The shifting technique will no longer provide
this for all indices, since after the column permutation the new code has no
longer the cyclic properties of C. To overcome this problem we simply search
for all valid parity check equations in each index position. It will increase
the precomputation time by a factor J � B, but for the case t = 2 this is
not at all a problem. Hence, this procedure will create di�erent parity check
equations for di�erent index positions, thus leading to a timevarying convo-
lutional code (in opposite to the code in Section 5.1). Also the number of
parity checks will vary with n.

To �nd parity check equations for permutations of C we do as follows.
We still assume that t = 2. Let � be a permutation that randomly permutes
only the �rst J indices, written as,

� =
�
�1 �2 : : : �N

�
;

where �i = i for i > J . As in Section 4.1 we use the following notation for

5.2. Description of an algorithm based on turbo code techniques 55

the generator matrix,

GLFSR =
�
h1 h2 : : : hN

�
;

i.e., hi is the ith column of GLFSR. If the matrix GLFSR is permuted
according to the permutation � we get the following matrix,

�(GLFSR) =
�
h�1 h�2 : : : h�N

�
: (5.4)

Assume that we want to �nd parity check equation for an index position �n,
where B + 1 � n � J . Apply suitable row operation to the matrix in (5.4)
to get a matrix, denoted by G0

LFSR, of the form,

G0
LFSR =

ĥ0�1 ĥ0�2 : : : ĥ0�n�B�1

IB+1 ĥ0�n+1 : : : ĥ0�N
�h0�1

�h0�2 : : : �h0�n�B�1
0 �h0�n+1 : : : �h0�N

!
; (5.5)

where IB+1 is the B + 1 � B + 1 identity matrix, ĥ0�i and
�h0�i are the �rst

B +1 and the last l�B � 1 positions, respectively, of the ith column of the
matrix in (5.4) after the row operations have been performed.

Then put each column h�i , J < i 6 N together with its index position
into one of 2l�B�1 di�erent �buckets�, sorted according to the column value.
Each pair of columns in each bucket will provide us with one valid parity
check equation (of the form (5.1)) for index position �n, provided u�n is
included. Finally, since the number of parity checks will vary with n, we
introduce m(n) as the number of found parity checks for index position �n.
The parity check equations for index position �n is written as

u�n +

BX
j=1

c
(1)
j u�n�i = u

(1)
i1

+ u
(1)
i2
;

u�n +
BX
j=1

c
(2)
j u�n�i = u

(2)
i1

+ u
(2)
i2
;

...

u�n +

BX
j=1

c
(m(n))
j u�n�i = u

(m(n))
i1

+ u
(m(n))
i2

:

(5.6)

For each n, the constants de�ning the parity check equations,

0
BBB@

g0(n)
g1(n)
...

gB(n)

1
CCCA =

0
BBBBBB@

1 1 1 : : : 1

0 c
(1)
1 c

(2)
1 : : : c

(m(n))
1

0 c
(1)
2 c

(2)
2 : : : c

(m(n))
2

...
...

...
. . .

...
0 c

(1)
B c

(2)
B : : : c

(m(n))
B

1
CCCCCCA ; (5.7)

56 5. An algorithm using turbo code techniques

Encoder M

Encoder 1

Encoder 2

�(1)

�(2)

�(M)

u u

v(1)

v(2)

v(M)

Figure 5.3: Model of the encoder structure used in the algorithm.

must be stored in order to build the trellis in the decoding phase.
To get M constituent encoders the steps above are repeated M times

with di�erent permutations. The encoder structure with M constituent
parallel encoders is illustrated in Figure 5.3. The information sequence
u = u1; u2; : : : ; uJ is the �rst J symbols in the LFSR output sequence, and
v(k) is the code sequence from the kth encoder. The code sequence from the
kth code can also be written in the form of (5.3) as

v(k) = v
(1;k)
B+1 ; v

(2;k)
B+1 ; : : : ; v

(m
(k)
B+1;k)

B+1 ; : : : ; v
(1;k)
B+2 ; v

(2;k)
B+2 ; : : : ; v

(m
(k)
B+2;k)

B+2 ; : : : ;

where v(j;k)n is the jth code symbol from code k at time n.
For each de�ned codeword symbol, v(j;k)n , we can construct an estimate

from the observed keystream sequence z. From (5.6) for the kth code we
get, v(j;k)n = u

(j;k)
i1

+ u
(j;k)
i2

. An estimate for v(j;k)n is then given as r(j;k)n =

z
(j;k)
i1

+ z
(j;k)
i2

. Hence, we can construct sequences, referred to as received
sequences, r(1); r(2); : : : ; r(M), where

r(k) = r
(1;k)
B+1 ; r

(2;k)
B+1 ; : : : ; r

(m
(k)
B+1;k)

B+1 ; : : : ; r
(1;k)
B+2 ; r

(2;k)
B+2 ; : : : ; r

(m
(k)
B+2;k)

B+2 ; : : : ;

1 6 k 6 M . For the information sequence u1; u2; : : : ; uJ we get an estimate
as r(0) = z1; z2; : : : ; zJ . The correlation between the LFSR output sequence
and the keystream gives the probability that an estimate is correct as, P (zj =

uj) = 1� p and P (r
(j;k)
n = v

(j;k)
n) = 1� 2p+ p2 when t = 2.

In the decoding phase the M constituent codes are decoded one by one in
a serial and iterative algorithm. The decoding algorithm is the same as the

5.2. Description of an algorithm based on turbo code techniques 57

Decoder MDecoder 1 Decoder 2

r(0)

r(1)

r(2)

r(M)

Figure 5.4: Model of the information �ow in a turbo decoding
algorithm.

decoding algorithm used for turbo codes [3]. In this chapter we follow the
description of decoding of turbo codes in [40, Chapter 7]. Start by decoding
the �rst code by an APP-decoding algorithm, such as the BCJR algorithm [1].
After the �rst decoder in the �rst iteration, we get the APP-probabilities,

P (un = 0jr(0)r(1)) 1 6 n 6 J; (5.8)

for the information sequence. Using Bayes rule, (5.8) can be written as

P (un = 0jr(0)r(1)) =
P (un = 0)P (r(0)r(1)jun = 0)

P (r(0)r(1))
: (5.9)

De�ne r(0)nn to be the sequence r(0)nn = (z1; z2; : : : ; zn�1; zn+1; zn+12; : : : ; zJ),

i.e, the symbol zn is excluded from r(0). Furthermore, since

P (r(0)r(1)jun = 0) = P (r
(0)
nn r

(1)jun = 0)P (znjun = 0);

(5.9) can be written as,

P (un = 0jr(0)r(1)) =
P (un = 0)P (znjun = 0)P (r

(0)
nn r

(1)jun = 0)

P (r(0)r(1))
: (5.10)

58 5. An algorithm using turbo code techniques

For un = 1 we can derive the following APP probabilities,

P (un = 1jr(0)r(1)) =
P (un = 1)P (znjun = 1)P (r

(0)
nn r

(1)jun = 1)

P (r(0)r(1))
: (5.11)

Combining (5.10) and (5.11) we get the following likelihood ratio,

P (un = 0jr(0)r(1))

P (un = 1jr(0)r(1))
=

P (un = 0)P (znjun = 0)P (r
(0)
nn r

(1)jun = 0)

P (un = 1)P (znjun = 1)P (r
(0)
nn r

(1)jun = 1)
: (5.12)

Since the sequence u is generated by an LFSR we might assume that P (un =
0) = P (un = 1) = 1=2. We de�ne the intrinsic information for the nth
symbol, denoted by �int

n , to be the ratio,

�int
n =

P (znjun = 0)

P (znjun = 1)
:

The intrinsic information does not depend on the code, and hence, it will not
vary through the iterations. Furthermore, de�ne the extrinsic information
for the nth symbol from the �rst decoder after the �rst iteration, denoted by
�
ext(1)
n (1), to be,

�ext(1)
n (1) =

P (r
(0)
nn r

(1)jun = 0)

P (r
(0)
nn r

(1)jun = 1)
:

Hence, the likelihood ratio of the APP probabilities in (5.12), denoted by
�
(1)
n (1), can be expressed as

�(1)
n (1) = �int

n �ext(1)
n (1): (5.13)

In the second decoder in the �rst iteration, the extrinsic information from
the �rst decoder, �ext(1)

n (1), is used as a priori information when the ratio
of the a posteriori probabilities �(2)

n (1) after the second decoder in the �rst
iteration. Following (5.13) �(2)

n (1) can be written as

�(2)
n (1) = �int

n �ext(1)
n (1)�ext(2)

n (1): (5.14)

This is then continued for all M decoders. Hence, the ratio of the a poste-
riori probabilities �(M)

n (1) after the last decoder in the �rst iteration can be
written as

�(M)
n (1) = �int

n �ext(1)
n (1)�ext(2)

n (1) : : :�ext(M)
n (1): (5.15)

After all M constituent codes have been decoded in the �rst iteration,
the a posteriori probabilities are fed back to the �rst decoder. In (5.15) we

5.2. Description of an algorithm based on turbo code techniques 59

see that the extrinsic information from all the decoders are present. To avoid
too much dependency the extrinsic information from the kth decoder in the
previous iteration is excluded in the next iteration. Hence, the ratio of the a
priori probabilities into the kth decoder in the ith iteration is given as

�(k)
n (i) =�ext(1)

n (i)�ext(2)
n (i) : : :�ext(k�1)

n (i)

�ext(k+1)
n (i� 1)�ext(k+2)

n (i� 1) : : :�ext(M)
n (i� 1):

(5.16)

The decoding procedure above is iterated I rounds. After decoding the
Mth code in the Ith iteration, the resulting ratio of the a posteriori proba-
bilities are given by

�(M)
n (I) = �int

n �ext(1)
n (I)�ext(2)

n (I) : : :�ext(M)
n (I): (5.17)

If �(M)
n (I) > 1 then zn is decoded 0, otherwise zn is decoded to 1. The

typical number of iterations that has to be made for the decoding to converge
is approximately 15�20. A comprehensive description of the procedure for
M constituent codes/decoders is given in Figure 5.5.

60 5. An algorithm using turbo code techniques

In: The l�N generator matrix GLFSR for the code generated by the
LFSR, the received sequence z, the error probability p, the number
of iterations I , and the number of constituent codes M .

1. Let �1; �2 : : : ; �M be M random permutations permuting indices
B + 1; : : : ; J and leaving the other indices �xed. Let G1 =
�1(GLFSR); G2 = �2(GLFSR); : : : ; GM = �M (GLFSR) be genera-
tor matrices for M di�erent codes. For each Gi, 1 6 i 6 M , �nd
all parity checks of the form (5.6).

Decoding phase:

2. After receiving z, construct the received sequences
r(0); r(1); r(2); : : : ; r(M) by

r(0) = z1; z2; : : : ; zJ ;

r(k) = r
(1;k)
B+1 ; : : : ; r

(m
(k)
B+1;k)

B+1 ; : : : ; r
(1;k)
B+2 ; : : : ; r

(m
(k)
B+2;k)

B+2 ; : : : ;

where,

r(j;k)n = z
(j;k)
i1

+ z
(j;k)
i2

; 1 6 j 6 mk(n); 1 6 k 6M;n > B:

3. Initiate �int
n . If zn = 0 then �int

n = 1�p
p , otherwise �int

n = p
1�p . Let

�
ext(k)
n (0) = 1, 1 6 k 6M , and let i = 1.

4. Decode each constituent code with an APP decoding algorithm.
The ratio of the a priori probabilities to the kth decoder is

�(k)
n (i) =�ext(1)

n (i)�ext(2)
n (i) : : :�ext(k�1)

n (i)

�ext(k+1)
n (i� 1)�ext(k+2)

n (i� 1) : : :�ext(M)
n (i� 1):

Calculate the extrinsic information �
ext(k)
n (i). Let i i+ 1.

5. If i < I go to 4., otherwise calculate the resulting ratio of the a
posteriori probabilities

�(M)
n (I) = �int

n �ext(1)
n (I)�ext(2)

n (I) : : :�ext(M)
n (I);

for each of the symbols u5B+1; u5B+2; : : : ; u5B+l, calculate the ini-
tial state u0, and check it for correctness.

Figure 5.5: A description of the fast correlation attack using
turbo decoding algorithm.

5.3. Simulation Results 61

B Chapter 4 M = 1 M = 2 M = 4 M = 8 M = 16

12 0.12 0.18 0.21 0.22 0.23 0.25
13 0.19 0.20 0.22 0.24 0.25 0.26
14 0.22 0.23 0.24 0.26 0.27 0.28
15 0.26 0.26 0.27 0.29 0.30 0.30

Table 5.2: Maximum p for turbo algorithm with B = 12; : : : ; 15
and varying M when N = 40000.

B Chapter 4 M = 1 M = 2 M = 4 M = 8 M = 16

10 0.31 0.31 0.33 0.34 0.35 0.36
11 0.34 0.34 0.36 0.37 0.38 0.38
12 0.36 0.37 0.38 0.38 0.39 0.39
13 0.37 0.39 0.40 0.40 0.41 0.41

Table 5.3: Maximum p for turbo algorithm with B = 10; : : : ; 13
and varying M when N = 400000.

5.3 Simulation Results

In this section we present some simulation results for algorithm based on
turbo codes. The parameter values are J = 10B+ l and I = 15. In Table 5.2
we show the maximum error probability for a received sequence of length
N = 40000 when the memory B is varying in the range 10 � 13 and the
number of constituent codes is 1; 2; 4; 8 and 16. Table 5.3 then shows the
same for length N = 400000. In the tables we also give the results obtained
by the algorithm proposed in Chapter 4.

We can see the performance improvement with growing M for �xed B.
A few comments regarding computational complexity and memory require-
ments are in place.

If one uses the suboptimal APP decoding algorithm in [92] the memory
requirements will be roughly the same as in Viterbi decoding. The com-
putational complexity for the algorithm in [92] is roughly a factor 3 higher
compared to the Viterbi algorithm, since it runs through the trellis three
times. There are also slightly di�erent operations performed in the algo-
rithms. The computational complexity is then further increased a factor
M when the turbo algorithm with M constituent codes are considered. Fi-
nally, we iterate at least twice. To conclude, for �xed parameters B and N ,
the turbo algorithm have roughly the same memory requirements, but an
increase of computational complexity of at least a factor 6M .

62 5. An algorithm using turbo code techniques

It is important to note that in many cases, the possible performance is not
limited by the computational complexity, but rather, limited by the required
memory. For example, if N = 40000, the maximal memory size that our
current implementation could handle for the basic algorithm on a regular
PC (for the example given in Table 5.1) was B = 17, but this required only
roughly half an hour CPU time. Hence, in this case we do not consider the
penalty of increased computational complexity to be severe.

5.4 Variant Based on Parallel Decoding

As can be seen from the description of the turbo algorithm, it is not directly
parallelizable (the APP decoding can be partly parallelized). Since it is
very reasonable to assume that the opponent can compute in parallel, we
shortly describe a modi�ed turbo algorithm. Assume that we have access
to M di�erent processors. We can then construct M di�erent constituent
convolutional codes exactly as described in Section 5.1 using some suitable
memory B. After having received the keystream z, the received sequences
r(0); r(1); : : : ; r(M) are constructed. Next, processor number i works as the
APP decoder for code number i. Since the decoders are working in parallel,
the extrinsic information can not be used in other decoders in the same
iteration. Hence, we must modify the expressions for calculating the ratio
of the a priori probabilities. Hence, the ratio of the a priori probabilities
entering the kth decoder in the ith iteration is given as

�(k)
n (i) =�ext(1)

n (i� 1)�ext(2)
n (i� 1) : : :�ext(k�1)

n (i� 1)

�ext(k+1)
n (i� 1)�ext(k+2)

n (i� 1) : : :�ext(M)
n (i� 1):

(5.18)

Each decoder then outputs the extrinsic information. As before, the ratio
of the a posteriori probabilities after decoding all the M codes in the Ith
iteration, is given as

�(M)
n (I) = �int

n �ext(1)
n (I)�ext(2)

n (I) : : :�ext(M)
n (I):

The structure is depicted in Figure 5.6. Some simulation result forN = 40000
are given in Table 5.4. As seen from Table 5.4, the performance of the parallel
decoding algorithm is almost the same as for the ordinary turbo decoding
algorithm. However, more iterations have to be made to get convergence.
The explanation of this behavior is that the extrinsic information in the
parallel decoding algorithm is not used until the next iteration. On the other
hand, for the serial decoding algorithm the extrinsic information is used
already in the decoding of the next code in the same iteration.

5.5. Summary 63

Code 1 Code 2 Code M

�
(M)
n (i)

?
? ??

?? ?

A priori

A posteriori

: : :

: : :

Figure 5.6: Structure of a parallel turbo decoding algorithm.

M = 1 M = 2 M = 4 M = 8 M = 16

Turbo 0.20 0.22 0.24 0.25 0.26
Parallel turbo 0.20 0.22 0.23 0.23 0.24

Table 5.4: Maximum p for the parallel turbo algorithm whenN =
40000 and B = 13.

5.5 Summary

In this chapter we have shown how iterative decoding techniques based on
the ideas from the construction and decoding of turbo codes can be used as
a basis for correlation attacks on stream ciphers. The performance has been
demonstrated through simulations.

Although we can reduce the memory complexity of the decoder by using
several parallel convolutional codes, we still have problem with the memory
requirements. When the length of the LFSR is long we need a fairly large
value of B to �nd any parity check equations in the precomputation phase.

The proposed iterative decoding techniques have opened for other possi-
bilities that can be considered in the future. An alternative to the decoding
structure in this work, as given in Figure 5.1, could be the following. Con-
sider all index positions that are used to build parity check equations for
the convolutional code. Now consider these positions as information symbols
for another convolutional code, and �nd parity checks for this code. De-
coding this code will provide APP probabilities for its information symbols
and hence more reliable parity checks for the �rst code. This idea is easily
generalized to more complex decoding structures.

64 5. An algorithm using turbo code techniques

6
An Algorithm Based on

Reconstruction of Linear
Polynomials

I
n Chapter 4, a fast correlation attack based on convolutional decoding
was presented. The main drawback with this algorithm is that a large

memory is needed in the decoding process. To circumvent the problem with
the memory consumption, a method based on several parallel convolutional
codes, as presented in Chapter 5, can be used. Even if the memory require-
ments were slightly reduced, a fast correlation attacks based on convolutional
codes still require to much memory for being practical for long shift registers.
Chebyzhov, Johansson, and Smeets proposed a new method for fast correla-
tion attacks in [13]. The method they proposed has approximately the same
performance as the algorithm based on convolutional codes in Chapter 4, but
it has a very low memory consumption in the decoding phase.

In this section we model the fast correlation attack as the problem of
learning a binary linear multivariate polynomial. Algorithms for polynomial
reconstruction with queries can be modi�ed through some general techniques
used in fast correlation attacks. The result is a new and e�cient way of
performing fast correlation attacks, with memory complexity the same as
the method proposed in [13].

This chapter is organized as follows. In Section 6.1 we give the prelimi-
naries on the standard model that is used for cryptanalysis and reformulate
this into a polynomial reconstruction problem. In Section 6.2 we review an
algorithm by Goldreich, Rubinfeld and Sudan [32] that solves the polynomial
reconstruction problem with queries in polynomial time. In Section 6.3 we

65

66 6. An algorithm based on reconstruction of linear polynomials

derive a new algorithm for fast correlation attacks, inspired by the previous
section. The algorithm was originally proposed in [45]. In Section 6.4 we
present simulation results and a comparison with other algorithms, and in
Section 6.5 a sketch of a theoretical analysis of the algorithm is presented.
In Section 6.6 we present a sequential version of the new algorithm, i.e, this
algorithm builds a tree of possible candidates and searches through it.

6.1 Preliminaries and Model

Most authors [15, 43, 44, 61, 62, 71, 82] use the approach of viewing fast cor-
relation attacks as a decoding problem over the binary symmetric channel.
However, in this section we show that fast correlation attacks can equivalently
be viewed as the problem of learning a linear multivariate polynomial.

Recall from Section 3.2 that the target LFSR have length l and feedback
polynomial g(x). The number of possible LFSR sequences is 2l and the
known keystream sequence z = (z1; z2; : : : ; zN) is of length N .

The assumed correlation between ui and zi is described by the correlation
probability 1=2 + �, de�ned by 1=2 + � = P (ui = zi), where 0 < � < 1=2.
The problem of cryptanalysis is the following. Given the received word
(z1; z2; : : : ; zN) as the output of the stream cipher, �nd the initial state (or
at least a part of it) of the target LFSR.

Let the unknown initial state of the target LFSR be denoted by

u0 = (u1; u2; : : : ; ul): (6.1)

From Section 3.2 we know that there exists an l�N matrix, GLFSR, of the
form

GLFSR =
�
h0 h1 : : : hN

�
; (6.2)

such that ui = u0hi. Hence, we can express each ui as some known linear
combination of the initial state u0, i.e.,

ui = hi1u1 + hi2u2 + � � �+ hilul; (6.3)

where hij is the element in row j of column i in GLFSR.
De�ne the initial state polynomial, denoted U0(x), to be

U0(x) = U0(x1; x2; : : : ; xl) = u1x1 + u2x2 + � � �+ ulxl: (6.4)

We introduce the variables x1;x2; : : : ;xN , where xi = hTi , for 1 6 i 6 N ,
i.e.,xi = (hi1; hi2; : : : ; hil). With this notation, we can express each ui as
being the initial state polynomial evaluated in some known point xi,

ui = U0(xi); i > 1: (6.5)

6.2. Learning polynomials with queries 67

The correlation between ui and zi can be described by introducing a noise
vector

e = (e1; e2; : : : ; eN); (6.6)

where ei 2 F2 are independent random variables for 1 � i � N and P (ei =
0) = 1=2 + �. Then we model the correlation by writing z = u+ e, giving

z = (U0(x1) + e1; U0(x2) + e2; : : : ; U0(xN) + eN); (6.7)

where xi are known l-tuples for all 1 6 i 6 N . In conclusion, we have
reformulated our problem into the following.

The output vector z consists of a number of noisy observations
of an unknown polynomial U(x) evaluated in di�erent known points
fx1;x2; : : : ;xNg. The task of the attacker is to determine the un-
known polynomial U(x).

6.2 Learning Polynomials with Queries

In computational learning theory (see e.g., [32] and its references), one might
want to consider the following general reconstruction problem:

Given: An oracle (black box) for an arbitrary unknown function f :
F l ! F , a class of functions F and a parameter Æ.

Problem: Provide a list of all functions g 2 F that agree with f on at
least a Æ fraction of the inputs.

The general reconstruction problem can be interpreted in several ways.
We consider only the paradigm of learning with persistent noise. Here we
assume that the output of the oracle is derived by evaluating some speci�c
function in F and then adding noise to the result. A lot of work on di�erent
settings for this problem can be found.

We will now pay special attention to the work of Goldreich, Rubinfeld and
Sudan in [32]. They consider a case of the reconstruction problem when the
hypothesis class F is the set of linear polynomials in l variables (actually, any
polynomial degree d was considered in [32], but we are only interested in the
linear case). In the binary case (F = F2), they demonstrate an algorithm that
given � > 0 and provided oracle access to an arbitrary function f : Fl2 ! F,
runs in time poly(l=�) and outputs a list of all linear functions in l variables
that agree with f on at least Æ = 1=2 + � of the output.

Let us immediately describe the procedure. First, the problem description
can be as follows. On a selected input x, the oracle evaluates an unknown
linear function p(x), adds a noise value e, and outputs the result p(x) + e.
On the next oracle access, the function is evaluated in a new point and a new
noise value is added.

68 6. An algorithm based on reconstruction of linear polynomials

The algorithm for solving the above problem given in [32] is a generaliza-
tion of an algorithm given in [31] (in the binary case that we consider they
coincide). Consider all polynomials of the form

p(x) =
lX

i=1

cixi:

The algorithm uses the concept of b-pre�xes, called i-pre�xes in [32], which
is de�ned to be all polynomials that can be expressed in the form

p(x1; x2; : : : ; xb; 0; 0; : : : ; 0):

This means that an b-pre�x is a polynomial in l variables in which only the
�rst b variables appear.

The algorithm proceeds in l rounds, so that in the bth round we have a
list of candidates for the b-pre�xes of p(x). The list of b-pre�xes is generated
by extending the list of (b�1)-pre�xes from the previous round in all possible
ways, i.e., by adding or not adding the xb variable to each of the members
of the (b � 1)-pre�xes. Hence the list is doubled in cardinality. After the
extension, a screening process takes place. The screening process guarantees
that the b-pre�x of the correct solution passes with high probability and that
not too many other pre�xes pass.

The screening process is done by testing each candidate pre�x, denoted
(c1; c2; : : : ; cb), as follows. Pick n = poly(l=�) sequences uniformly from F

l�b
2 .

For each such sequence, denoted (sb+1; : : : ; sl), and for every � 2 F2 , estimate
the quantity

P (�) = P

0
@f(r; s) = bX

j=1

cjrj + �

1
A ;

when r = (r1; r2; : : : ; rb) is chosen randomly from F
i
2 . Here (r; s) denotes the

vector (r1; : : : ; rb; sb+1; : : : ; sl). All these probabilities can be approximated
simultaneously by using a sample of poly(l=�) sequences (r1; : : : ; ri). A can-
didate is considered to pass the test if for at least one sequence (si+1; : : : ; sl)
there exists � such that the estimate P (�) is greater than 1=2 + �=3. It is
shown in [32] that the correct candidate passes the test with overwhelming
probability, and that not too many other candidates do. For more details on
this algorithm, we refer to [32].

6.3 Fast Correlation Attacks Based on Algorithms for

Learning Polynomials

We observe the similarities between our correlation attack problem described
as a polynomial reconstruction problem as in Section 6.1, and the problem

6.3. Fast correlation attacks based on algorithms ... 69

of learning polynomials with queries as described in the previous section.
Since queries are essential in the polynomial time algorithm of the previ-

ous section, it can not be applied directly to the correlation attack problem.
In the query case, sample points given to the oracle can be chosen, whereas

for correlation attacks the sample points are simply randomly selected. The
latter problem is actually a well-known problem also in learning theory, called
�learning parity with noise�, and it is commonly believed to be hard, see [7,49].
Nevertheless, we are interested in �nding as e�cient correlation attacks as
possible, and we will now derive an algorithm that is inspired by the results
presented in the previous section.

Let us �rst brie�y review our problem formulation. The recovery of the
initial state of the target LFSR is viewed as the problem of recovering an
unknown binary linear polynomial U0(x) in l variables. To our disposal,
we have a number N of noisy observations of this polynomial (the output
sequence), denoted

z = (z1; z2; : : : ; zN):

The noise is such that

P (zi = U0(xi)) = 1=2 + �; 1 6 i 6 N;

where xi are known random l-tuples for all 1 6 i 6 N .
Our problem in applying the algorithm described in Section 6.2 is the

fact that we are not able to select the points xi ourselves. Instead, we are
restricted to use the values given by the N columns of GLFSR. This can to
some extent be compensated for by the following observation [44].

Assume that we have noisy observations zi1 and zi2 of the polynomial
U(x) in two points xi1 and xi2 , respectively, i.e., P (zi1 = U0(xi1)) = 1=2+ �
and P (zi2 = U0(xi2)) = 1=2 + �. Since U0(x) is a linear polynomial, we can
get an observation in the point xi1 + xi2 as

zi1 + zi2 = U0(xi1) + ei1 + U0(xi2) + ei2

= U0(xi1 + xi2) + ei1 + ei2 :
(6.8)

The probability that zi + zj = U0(xi + xj) is given as

P (zi1 + zi2 = U0(xi1 + xi2)) = P (zi1 + zi2 = U0(xi1) + U0(xi2))

= P (zi1 = U0(xi1))P (zi2 = U0(xi2))

+ P (zi1 6= U0(xi1))P (zi2 6= U0(xi2))

= (1=2 + �)2 + (1=2� �)2

= 1=2 + 2�2:

(6.9)

Next, observe that we do not have to restrict ourselves to addition of just two
sample points, but can consider any sum of t points. Hence, any

Pt
j=1 zij ,

70 6. An algorithm based on reconstruction of linear polynomials

i1; : : : it 2 f1; 2; : : : ; Ng, will be a noisy observation of U(
Pt

j=1 xij) with
noise level

P (

tX
j=1

zcj = U0(

tX
j=1

xij)) = 1=2 + 2t�1�t: (6.10)

For convenience, we introduce the notation x̂ =
Pt

j=1 xij , ẑ =
Pt

j=1 zij , and

ê =
Pt

j=1 eij and write
U0(x̂) = ẑ + ê;

where ê is a binary random variable with P (e = 0) = 1=2 + 2t�1�t, from
(6.10).

If we want to use the algorithm in Section 6.2 we must feed the oracle
with x̂ points of a special form. An idea in the algorithm to be described is
to construct such points by adding suitable vectors xij in such a way that
their sum is of the required form. Clearly, the noise level increases with the
number of vectors in the sum, so we are interested in having as few vectors
as possible summing to the desired form. On the other hand, allowing only
very few vectors in the sum will give us only very few x̂ vectors of the desired
form. Hence, there is a tradeo� for the value of the constant t. We return to
this issue in the theoretical analysis.

Also, we introduce a slightly modi�ed version of the algorithm from Sec-
tion 6.2. The new version includes a squared distance used in the test in
the screening procedure. We �rst consider a version in which the idea of
b-pre�xes is removed. In Section 6.6 we elaborate on the idea of b-pre�xes.
A description of the basic algorithm is given in Figure 6.1.

Let us give an intuitive explanation of the algorithm. We �rst note that
the algorithm recovers the �rstB bits of the initial state, namely (u1; : : : ; uB).
The remaining part of the initial state can be recovered in a similar way.
However, recover the remaining bits is a simpler problem, and we can ignore
the complexity of recover them.

Now consider the case of one hypothesized value of (u1; : : : ; uB). We want
to check whether this value, denoted (û1; : : : ; ûB), is correct or not. This is
done by �rst selecting a certain (l�B)-tuple s(k) = (s

(k)
1 ; s

(k)
2 ; : : : ; s

(k)
l�B), and

then by �nding all linear combinations of t vectors in fx1;x2; : : :xNg,

x̂(k) =

tX
j=1

xij ; (6.11)

having the special form

x̂(k) = (x̂1; : : : ; x̂B ; s
(k)
1 ; : : : ; s

(k)
l�B); (6.12)

for arbitrary values of x̂1; : : : ; x̂B (not all zero). The complexity of this pre-
computation step depends on t, and by using some simple birthday-paradox

6.3. Fast correlation attacks based on algorithms ... 71

arguments, one can show that the computation can be done in O(Ndt=2e) us-
ing O(Nbt=2c) storage. When t > 3, the memory complexity can be improved
to O(Nbt=2c), by using the improvement proposed in [18].

The main observation is that the relation between U(x̂(k)) and ẑ(k) can,
from our previous arguments, be written in the form

U(x̂(k)) = ẑ(k) + ê; (6.13)

where ê represents the noise having a noise level of P (ê = 0) = 1=2+ 2t�1�t.
Now (6.13) is equivalently expressed as

BX
j=1

uj x̂j +
lX

j=B+1

ujs
(k)
j = ẑ(i) + ê; (6.14)

and this can be rewritten as

BX
j=1

(uj + ûj)x̂j +
lX

j=B+1

ujs
(k)
j + ê =

BX
j=1

ûjx̂j + ẑ(k): (6.15)

Recall that W =
Pl

j=B+1 ujs
(k)
j in (6.15) is a �xed binary random variable

for all linear combinations of the special form that we required, i.e., for a
�xed s(k) we will have either W = 0 for all our x̂(k)s, or W = 1.

Consider a correct hypothesized value, i.e., ûj = uj for j = 1; : : : ; B, and
assume that we have S(k) equations. Let � be the number of times we have

BX
j=1

ûj x̂j = ẑ(k):

Then � simply counts the number of times the right hand side in (6.15) is
zero. Since

PB
j=1(uj + ûj)x̂j = 0, the probability for the left hand side to

be zero is then P (W + ê = 0). This probability is either 1=2 � 2t�1�t or
1=2 + 2t�1�t for all equations, depending on whether W = 0 or W = 1.
Thus � has a binomial distribution Bin(S(k); p), with p being one of the two
probabilities above.

However, if the hypothesized valued was wrong, then

P (

BX
j=1

(uj + ûj)x̂j = 0) = 1=2;

and hence, it will result in � being binomial distributed, Bin(S(k); p), with
p = 1=2.

72 6. An algorithm based on reconstruction of linear polynomials

In order to separate the two hypothesis we calculate the number of times
we have

PB
j=1 ûj x̂j = ẑ(k), denote this by �. Then a squared distance

((S(k)�2 ��)2) is used. In Section 6.5 we show that under certain conditions,
the squared distance is close to optimal. If we have enough points, i.e., we
can create enough di�erent x̂ as linear combinations of at most t xi's, we
will be able to separate the two hypotheses. However, the number of linear
combinations for a particular s(k) value is limited. Hence, we also run through
a lot of di�erent s(k) values. Each such value of s(k) gives a squared distance,
and we sum them all up to become our overall distance, denoted by �.

In: z = (z1; : : : ; zN), [x1;x2; : : : ;xN], and constants t, B and n.

1. (Precomputation) Select n di�erent (l � B)-tuples
s(1); s(2); : : : ; s(n). For each s(k), �nd all linear combinations
of the form x̂(k) =

Pt
j=1 xij which are of the special form

x̂(k) = (x̂1; : : : ; x̂B ; s
(k)
1 ; : : : ; s

(k)
l�B);

for arbitrary values of x̂1; : : : ; x̂B . Store all x̂(k) together with all
ẑ(k) =

Pt
j=1 zij . Let the set of all such pairs for a given value of

s(k) have cardinality S(k).

2. Run through all 2B values of the constants (û1; : : : ; ûB) as follows.
Set � 0.

3. For each s(k), run through all S(k) stored pairs f(x̂(k); ẑ(k))g, cal-
culate the number of times we have

BX
j=1

ûj x̂j = ẑ(k);

and denote this by �. Update

� � + (S(k) � 2 � �)2:

4. If � is the highest received value so far, store (û1; : : : ; ûB). Set
� 0.

Out: Output (û1; : : : ; ûB) having the highest value of �.

Figure 6.1: A description of the basic algorithm.

6.4. Simulation results 73

6.4 Simulation Results

In this section we present some simulation results for the basic algorithm
described in Section 6.3. Simulations are presented for t = 2 and t = 3. In
general, increasing t will increase the performance at the cost of an increased
precomputation time and increased memory requirement in precomputation.

The �rst simulations are for the same feedback polynomial and the same
length of the observed keystream as in [11,16,70] and the previous chapters,
i.e., a feedback polynomial with l = 40. Table 6.1 shows the maximum error
probability p = 1=2� � for the basic algorithm when the received sequence
is of length N = 400000. The parameter B is varying in the range 13� 16
and n is in the set n 2 f1; 2; 4; 8; : : : ; 512g. As a particular example, when

N = 400000

n B = 13 B = 14 B = 15 B = 16

1 0.30 0.32 0.34 0.36
2 0.32 0.34 0.36 0.38
4 0.34 0.36 0.38 0.40
8 0.36 0.38 0.40 0.41
16 0.38 0.39 0.41 0.42
32 0.39 0.40 0.42 0.43
64 0.40 0.41 0.42 0.44
128 0.41 0.42 0.43 0.44
256 0.42 0.43 0.43 0.45
512 0.42 0.44 0.44 0.45

Table 6.1: Maximum p = 1=2 � � for the basic algorithm with
t = 2, B = 13; : : : ; 16, varying n, and N = 400000.

B = 16; n = 256 we reach p = 0:45 having 400000 known keystream symbols.
The running time is less than 3 minutes, and the precomputation time is
negligible.

It is important to observe that for a �xed running time, the performance
increases with increasing n (up to a certain point). The table entries {B = 16,
n = 1}, {B = 15, n = 4}, {B = 14, n = 16}, {B = 13, n = 64} all have
roughly the same computational complexity, but an increasing performance
with n can be observed.

More interesting is perhaps to show simulation results for longer LFSRs,
as was done in [13]. We present results for the basic algorithm when l =
60 using a feedback polynomial of weight 13. In Table 6.2 we show the
required computational complexity and the achieved correlation probability
for di�erent algorithm parameters. The implementations were written in

74 6. An algorithm based on reconstruction of linear polynomials

l = 60, t = 2

N k n time p

40 � 106 23 1 96 sec 0.35
40 � 106 22 2 48 sec 0.36
40 � 106 21 4 25 sec 0.36
40 � 106 25 1 26 min 0.40
40 � 106 24 2 13 min 0.40
40 � 106 23 4 6:5 min 0.40
40 � 106 22 8 3:3 min 0.41
40 � 106 25 4 106 min 0.43

l = 60, t = 3

N k n time p

1:5 � 105 24 1 4:5 min 0.3
1:5 � 105 23 2 2:3 min 0.3
1:5 � 105 22 4 69 sec 0.3
1:5 � 105 25 1 18 min 0.32
1:5 � 105 24 2 9:2 min 0.32
1:5 � 105 23 4 4:6 min 0.32

Table 6.2: Performance of the basic algorithm with l = 60 when
t = 2 and t = 3, respectively.

C and the running times were measured on a Sun Ultra-80 running under
Solaris.

We can compare with other suggested methods. Actually, in the special
case of n = 1, our proposed algorithm will coincide with the method in
[13]. This enables us to see the improvement in Table 6.2, by observing the
decrease of decoding time when n increases (for a �xed p).

An important advantage for the proposed method is the storage complex-
ity. The attacks based on convolutional and turbo codes in Chapter 4 and
Chapter 5, respectively, uses a trellis with 2B states. Hence, the size of B is
limited to 20�30 in practise, due to the fact that it must be kept in memory
during decoding. On the other hand, the memory requirements for the algo-
rithms presented in this paper remain constant when B increases. Also, the
proposed algorithm can be trivially parallelized, and hence the only limiting
factor is the total computational complexity.

6.5. Theoretical Analysis 75

6.5 Theoretical Analysis

In this section we sketch some results for a theoretical analysis of the proposed
algorithms. First, we give an expression for the expected number of linear
combinations of the form (6.11), i.e., the expected value of the parameter S(k)

in the algorithm. Let E[S(k)] be the expected number of linear combinations
of the form (6.11) that can be created from t out of N random vectors
x1; : : : ;xN . From Lemma 4.1 we get that E[S(k)] is given as

E[S(k)] =

�
N
t

�
2l�B

: (6.16)

Next, we show that using � as de�ned in Section 6.3 gives close to optimal
performance. We start by considering the case when we have one �xed value
of s(k). Then we generalize to the case with several di�erent s(k) vectors.

Assume that for the given s(k) we have created S(k) noisy observations
of the polynomial U(x). The expected value of S(k) is then given by (6.16).
Assume further that we are considering a particular candidate (û1; : : : ; ûB),
and that we have found � observations such that

PB
j=1 ûj x̂j = ẑ(k): Consider

two hypothesis H0; and H1: Let H1 be the hypothesis that the candidate is
correct, and H0 that the candidate is wrong.

Introduce the random variable W =
Pl

j=B+1 ujs
(k)
j . De�ne p0 as p0 =

P (e = 0) = 1=2 + 2t�1�t. Furthermore, P (W = 0) = 1=2: We showed in
Section 6.3 the following distribution for �:

�jH0 2 Bin(S; 1=2);

�jH1;W = 0 2 Bin(S; p0);

�jH1;W = 1 2 Bin(S; (1� p0)):

(6.17)

The estimate of (u1; : : : ; uB) is taken as the (û1; : : : ; ûB) for which P (H1j�) is
maximal. However, it is not possible to calculate P (H1j�) directly. Instead,
we can equivalently choose the estimate as the (û1; : : : ; ûB) for which the
likelihood ratio

� =
P (H1j�)

1� P (H1j�)
=
P (H1j�)

P (H0j�)
=

P (�jH1)P (H1)

P (�jH0)P (H0)
;

is maximal. Using (6.17) we get

� =
1
2 (
�
S(k)

�

�
p�0 (1� p0)

S(k)�� +
�
S(k)

�

�
pS

(k)��
0 (1� p0)

�)�
S(k)

�

�
(12)

S(k)
�
P (H1)

P (H0)
:

The expression above can also be written as [9]

� = (4p0(1� p0))
S(k)=2 cosh(ln(

p0
1� p0

)(
S(k)

2
� �)) �

P (H1)

P (H0)
:

76 6. An algorithm based on reconstruction of linear polynomials

Since P (H0), P (H1), and p0 do not depend on �, it follows that maximizing
� is equivalent to taking the candidate for which

cosh(ln(
p0

1� p0
)(
S(k)

2
� �))

is maximum.
In our case it is more convenient to use the loglikelihood ratio � = ln(�),

and then, it follows that maximizing � is equivalent to taking the candidate
for which

ln cosh(ln(
p0

1� p0
)(
S(k)

2
� �)) (6.18)

is maximum. If we would like to approximate (6.18) we can use the following

ln coshx �

(
jxj � ln 2 jxj > 1;
x2

2 jxj < 1:

Hence, if

ln(
p0

1� p0
)(
S(k)

2
� �)

is small, the chosen distance is close to being statistically optimal. In an
implementation of the algorithm it might be possible to use the value of (6.18)
directly. One of the main reason to use the quadratic distance, is that the
theoretical analysis will be simpli�ed.

This derivation holds when we have one value of s. Now we assume that
we have n di�erent s(k) values (s(1); s(2); : : : ; s(n)) and corresponding � =
(�(1); �(2); : : : ; �(n)). Furthermore, assume that the we have the same value
of p0 for all n di�erent s(k)s and that E[S(1)] = E[S(2)] = � � � = E[S(n)] = S.
By observing that

P (�jH0) = P (�(1)jH0)P (�(n)jH0) � � �P (�(2)jH0)

we see that the distance �, where

� =

nX
k=1

(2�� S(k))2;

is close to being statistically optimal.
Finally in this section, we give a sketch of an analysis of the performance of

the algorithm when we use the quadratic distance measure. Let = 2��S(k).
From (6.17) we get

E[jH0] = 0; Var(jH0) = S(k);

E[jH1;W = 0] = (2p0 � 1)S(k); Var(jH1;W = 0) = 4S(k)p0(1� p0);

E[jH1;W = 1] = (1� 2p0)S
(k); Var(jH1;W = 1) = 4S(k)p0(1� p0):

(6.19)

6.6. A sequential algorithm 77

If we approximate the binomial distribution for � with a normal distri-
bution, we can also approximate the distribution for with a normal distri-
bution. Since � is given as � =

Pn
k=1(

(k))2, we get that � is approximately
chi-square distributed [75]. Under the hypothesis H0, the probability dis-
tribution for � can be approximated with a central chi-square distribution.
Similarly, under the hypothesis H1, the probability distribution for � can be
approximated with a noncentral chi-square distribution.

6.6 A Sequential Algorithm

In this section we want to elaborate around the idea of using b-pre�xes from
Section 6.2 and modify the proposed algorithm into a sequential algorithm.

Instead of simply selecting the candidate (û1; : : : ; ûB) having the highest
value of �, we would now want to have a set of surviving candidates. These
are then extended by incrementing, in our case, B by one. This extension
doubles the number of candidates, since each surviving candidate can be
extended in the (B + 1)th position by either 0 or 1. But before the next
extension, we run a screening procedure that removes a substantial part of
the candidates.

This is a straightforward usage of the idea of b-pre�xes. From our perspec-
tive, it does introduce some small practical problems. The major problem is
that we now must store a large set of possible candidates. The performance
of our algorithms is highly connected with the computational complexity. If
a large memory must be used in our algorithm, some degradation in complex-
ity is likely to appear in practice. This is the reason for presenting a slightly
di�erent approach. Essentially we use, instead of an l round algorithm, a
tree structure for all candidates that are still �alive�. The advantage is that,
essentially, the memory requirements are removed. Figure 6.3 shows how a
version of such an algorithm may look like.

Note that the set
 is only introduced to simplify the presentation. We
do not need to store it. It is a lexicographically ordered set, and when we
put new values in
, we actually do not need to store anything.

Whether a candidate will survive the test at level b or not is determined
by a threshold value (threshold(b)). Increasing the threshold value will throw
away more wrong candidates, but will also increase the probability of throw-
ing away the correct candidate.

Comparing with the algorithm of the previous section, this algorithm will
have a better performance (fewer tests on average) if we implement it in an
e�cient way. One important observation in this direction is the fact that all
x̂(k) vectors for a certain k will appear again as valid x̂(k) vectors for higher
b (assuming that we use the same s(k) vectors). This means that we should
not recalculate � on x̂(k) vectors that have already been used, but rather, we

78 6. An algorithm based on reconstruction of linear polynomials

(0; 0; 0; 0; 0)

0

1

0

1

v
v
v

f
f

��
��

��

PPPPPP��
��

��

PPPPPP

Figure 6.2: The tree in Example 6.1.

store the value of � for all s(k) values and incorporate this in the calculation
for higher b values.

Example 6.1: Assume that the sequential algorithm is applied with B = 5.
We examine �rst the value (u1; : : : ; u5) = (0; 0; 0; 0; 0). Assume that the re-
ceived � is higher than threshold(5). We then extend this vector with the two
possible values for u6, giving (0; 0; 0; 0; 0; 0) and (0; 0; 0; 0; 0; 1). We continue
to examine the �rst of these candidates. Assume that � < threshold(6).
We continue with the second of these candidates. Assume that in this
case � > threshold(6). We extend this vector and get (0; 0; 0; 0; 0; 1; 0) and
(0; 0; 0; 0; 0; 1; 1) as two new vectors. We continue in this fashion. The tree
structure of this procedure is presented in Figure 6.2. �

6.6. A sequential algorithm 79

In: z = (z1; : : : ; zN), [x1;x2; : : : ;xN], and constants t, B, n and
threshold(b). Let
 be a list of all B-tuples in lexicographical
order.

1. (Precomputation) For each value of b, B 6 b 6 l, set up a screening
procedure as given in 2.

2. (Precomputation) Select n di�erent (l�b)-tuples s(1); : : : ; s(n). For
each s(k), �nd all linear combinations of the form x̂(k) =

Pt
j=1 xij

which are of the special form

x̂(k) = (x̂1; : : : ; x̂b; s
(k));

for arbitrary values of x̂1; : : : ; x̂b. Store (x̂(k); ẑ(k) =
Pt

j=1 zij).

Assume that S(k) such pairs have been stored.

3. Take the �rst value in
, denoted (û1; : : : ; ûb).

4. For each s(k), run through all S(k) stored pairs for si, calculate the
number of times we have

bX
j=1

ûj x̂j = ẑ(k);

and denote this by �. Update

� � + (S(k) � 2 � �)2:

5. If � > threshold(b), put both (û1; : : : ; ûb; 0) and (û1; : : : ; ûb; 1) in

. Set � 0. If j
j > 1 go to 3.

Out: Output all values in
 that has reached length l.

Figure 6.3: A description of the sequential algorithm.

80 6. An algorithm based on reconstruction of linear polynomials

6.7 Summary

In this chapter we have shown how learning theory can be used as a ba-
sis for correlation attacks on stream ciphers. Techniques for reconstructing
polynomials have been modi�ed and combined with some general techniques
from correlation attacks. The performance has been demonstrated through
a sketch of a theoretical analysis as well as through simulations. The simu-
lations show a very good performance.

The problem that arises in a standard correlation attack is equivalent to
the problem of learning parity with noise, a well known problem in com-
putational learning theory, commonly believed to be a hard problem. This
might indicate that it is hard to �nd further signi�cant improvements on the
problem. One interesting idea would be to examine whether recent results
on polynomial reconstruction as a decoding tool for certain error correcting
codes [91] can be used. Some results in this direction can be found in [39].

7
A Comparison with Other

Proposed Algorithms

A
fter the algorithm based on convolutional codes (Chapter 4) was pre-
sented at Eurocrypt'99, a lot of research on fast correlation attacks have

taken place. Many other algorithms for fast correlation attacks have been
proposed in the last few years. In this chapter we will present four of them
and compare their performance with the other algorithms presented in this
thesis.

The algorithms for fast correlation attacks to be presented in this chapter
all use the standard model as described in Chapter 3. This model is brie�y
discussed in Section 7.1. In Section 7.2 we will present an algorithm by
Canteaut and Trabbia. The algorithm was originally proposed at Eurocrypt
2000 [11]. At FSE 2000 [13] Chebyzhov, Johansson, and Smeets proposed
a simple and e�cient algorithm for fast correlation attacks. This algorithm
is presented in Section 7.3. Mihaljevi¢, Fossorier, and Imai have developed
a number of algorithms for fast correlation attacks in the last few years.
In Section 7.4 we present their most recent proposal, originally proposed
at FSE 2001 [70]. The �nal algorithm to be presented in this chapter was
proposed by Chose, Joux, and Mittel at Eurocrypt 2002 [16]. This algorithm
is a modi�cation of the algorithm by Mihaljevi¢, Fossorier, and Imai [70].
A description of this algorithm is given in Section 7.5. In Section 7.6 the
performance of di�erent algorithms for fast correlation attacks is compared
and discussed.

81

82 7. A comparison with other proposed algorithms

g(x) - -
-

-

HHHHHHj��
��

��*ui ziU Z

0

1

0

1

p
p

1� p

1� p

LFSR BSC

Figure 7.1: Model of a correlation attack

7.1 Model for the Correlation Attacks

The algorithms presented in this chapter all use the standard model for
fast correlation attacks. Consider a keystream generator that contains one
or several binary LFSRs. Assume that there is a correlation between the
keystream and the output of one of the LFSRs, called the target LFSR,
in the keystream generator. Recall from Chapter 3 the following notation.
Let u1; u2; : : : be the output of the target LFSR, and let z1; z2; : : : be the
generated keystream. Furthermore, assume that the correlation is of the form

P (zi = ui) = 1� p =
1

2
� �; 8i:

Let the length of the target LFSR be l, and let the feedback polynomial
be g(x). For the attacker the keystream generator can be modelled as in
Figure 7.1.

In the attack, assume that the opponent has observed a keystream se-
quence of length N , denoted by z = z1; z2; : : : ; zN . The task of the attacker
is then to recover the initial state of the target LFSR, given the observed
sequence.

7.2 The Algorithm by Canteaut and Trabbia

At Eurocrypt 2000 Canteaut and Trabbia presented an algorithm for fast cor-
relation attacks [11] based on low density parity check codes. The algorithm
�nds parity check equations of weight 4 and 5, and decodes with a decoding
algorithm for low density parity check codes. In the precomputation the fol-
lowing steps are performed. First, calculate all residues qi(x) = xi mod g(x),
for 1 6 i < N , and store in a table T . Then, compute all possible polynomi-
als of the form 1 + qi1(x) + � � �+ qit�1(x), for 1 6 i1 < � � � < it�1 < N . If we
can �nd a j such that qj(x) = 1+ qi1(x)+ � � �+ qit�1(x) then the polynomial

p(x) = 1 + xi1 + xit�1 + xj

7.3. The Algorithm by Chebyzhov, Johansson, and Smeets 83

is a multiple of g(x) with weight t+ 1, and we add p(x) to the set of parity
check equations. From [11] we get that the number of parity check equa-
tions of weight t + 1, denoted m(t + 1), found by the algorithm above is
approximately

m(t+ 1) �
N t

t!2L
: (7.1)

After observing a keystream of length N , an estimate of the LFSR initial
state is computed by Gallager's iterative decoding algorithm for low density
parity check codes [29].

There exist several decoding algorithms that can be used when a set of
low weight parity check equations has been found. Comparison of the perfor-
mance of di�erent decoding algorithms is given by Fossorier, Mihaljevi¢, and
Imai in [28], where also some theoretical results are presented. A theoretical
discussion of the performance of iterative decoding algorithms suitable for
fast correlation attacks is also given in [34, 72].

7.3 The algorithm by Chebyzhov, Johansson, and

Smeets

At Fast Software Encryption 2000 Chebyzhov, Johansson, and Smeets pro-
posed a simple algorithm for fast correlation attacks [13]. In Section 3.2 it
was shown that correlation attacks can be modelled as decoding of a random
(N; l) linear code. However, decoding of random linear codes is considered
to be a hard problem. The algorithm proposed in [13] �nds an [m;B] linear
code associated with the target LFSR, where 1 < B < l. By ML-decoding of
this new code the �rst B symbols of the initial state of the target LFSR are
recovered. When the �rst B symbols have been recovered it is an easy task
to recover the remaining bits.

In the precomputation phase of the algorithm, a method for �nding all
parity check equations of the form

BX
j=1

ajuj = ui1 + ui2 + � � �+ uit ; (7.2)

is applied. The method suggested in [13] was based on the methods for
�nding a low rate convolutional code in Chapter 4. However, one can also
use the improved method for �nding parity checks proposed in [16]. Denote
the total number of parity check equations of the form (7.2), found in the
precomputation, by m. Hence, we have the following set of parity check

84 7. A comparison with other proposed algorithms

equations PB
j=1 a

(1)
j uj = u

i
(1)
1

+ u
i
(1)
2

+ � � �+ u
i
(1)
t

;PB
j=1 a

(2)
j uj = u

i
(2)
1

+ u
i
(2)
2

+ � � �+ u
i
(2)
t

;

: : :PB
j=1 a

(m)
j uj = u

i
(m)
1

+ u
i
(m)
2

+ � � �+ u
i
(m)
t

:

(7.3)

From the set of parity check equations above we can de�ne a matrix G2 as

G2 =

0
BBB@
a
(1)
1 a

(2)
1 : : : a

(m)
1

a
(1)
2 a

(2)
2 : : : a

(m)
2

: : : : : : : : : : : :

a
(1)
B a

(2)
B : : : a

(m)
B

1
CCCA :

The matrix G2 can then be considered to be a generator matrix of an [m;B]
linear code C2, and the �rst B symbols of the initial state (u1; u2 : : : ; uB)
are the information symbols. Hence, the codewords of C2 can be written as
(U1; U2; : : : ; Um) = (u1; u2 : : : ; uB) � G2, i.e., Uj = u1a

(j)
1 + u2a

(j)
2 + � � � +

uBa
(j)
B . From the right hand side of (7.3) we can calculate a received word

(Z1; Z2; : : : ; Zm), where Zj = z
i
(j)
1

+ z
i
(j)
2

+ � � �+ z
i
(j)
t

; j = 1; : : : ;m.
In the decoding phase a simple ML-decoding algorithm is used. Run

through all 2B possible values of (u1; u2; : : : ; uB). For each (u1; u2; : : : ; uB),
calculate (u1; u2; : : : ; uB) � G2, and calculate the Hamming distance to the
received word (Z1; Z2; : : : ; Zm). Output the information symbols for the
codeword that is closest to the received vector.

One of the interesting properties of the algorithm above is that the perfor-
mance can be determined theoretically. By using random coding arguments
the following theorem was proved in [13].

Theorem 7.1: With given B; l; �; t, the required length N of the observed
sequence z1; z2; : : : ; zN for the algorithm to succeed is

N � 1=4 � (2Bt! ln 2)1=t � ��2 � 2
l�B
t ;

assuming N � m.

7.4 The algorithm by Mihaljevi¢, Fossorier, and Imai

Recently, several algorithms for fast correlation attacks have been proposed
by Mihaljevi¢, Fossorier, and Imai [28,67�70]. In this section we will present
their most recent proposal [70]. The algorithm combines exhaustive search
over the �rst B bits with a list decoding algorithm to recover the initial state
of the target LFSR.

7.5. The algorithm by Chose, Joux, and Mittel 85

In the algorithm an algorithm parameter D is introduced, where D > l.
In the precomputation phase of the algorithm a set of parity check equations
for each k = l + 1; l + 2; : : : ; D is found. Let
k be the set of parity check
equations for the kth symbol. The set
k contains all parity check equations
of the form

BX
j=1

ajuj + uk + ui1 + ui2 + � � �+ uit = 0: (7.4)

In [70] only the case t = 2 was considered.
In the decoding phase of the algorithm, the following steps are performed.

Run through all 2B possible values of the �rst B symbols of the initial state.
For each possible (u1; u2; : : : ; uB) and for each k = l+1; l+2; : : : ; D evaluate
the parity check equations, i.e., calculate the number of times that

BX
j=1

ajuj + zk + zi1 + zi2 + � � �+ zit = 0;

for each parity check equation in
k. For each value of (u1; u2; : : : ; uB) two
candidate codewords are created. The �rst candidate is given by the l � B
positions with the largest number of satis�ed parity check equations. The
second candidate is calculated from the l � B positions with the largest
number of unsatis�ed parity check equations. In this second candidate the
bit values are inverted. The candidates are then used in a �nal correlation
check to �nd the correct initial state.

Some theoretical discussions regarding the performance and complexity
were also made in [70]. From these theoretical results, the complexity of a
fast correlation attack on the stream cipher LILI-128 was calculated.

7.5 The Algorithm by Chose, Joux, and Mittel

At Eurocrypt 2002, Chose, Joux, and Mittel proposed an improvement of
the results in [70]. The algorithm they propose is a small modi�cation of the
algorithm byMihaljevi¢, Fossorier, and Imai. The big improvements reported
in [16] do not come from the method used for fast correlation attacks, but
rather from some new methods for e�cient implementations. These new
methods can be applied also to several other proposals for fast correlation
attacks.

In the precomputation phase of the attack, Chose, Joux, and Mittel pro-
pose a new method for �nding parity check equations. The method proposed
in [16] is based on a match-and-sort algorithm [79]. Assume that we want to

86 7. A comparison with other proposed algorithms

�nd parity check equations of the form

A(u0) = ui1 + ui2 + : : :+ uit +

BX
j=1

cjuj ; (7.5)

where u0 is the initial state of the target LFSR, A(u0) =
Pl

j=1 ajuj , and the
ajs are some �xed constants. The match-and-sort algorithm proposed in [16]
�nds parity check equations of the form (7.5) with computational complexity
O(Ndt=2e logN) and with memory complexity Ob(t+1)=4c.

The new algorithm for �nding parity check equations was applied to the
problem of �nding parity check equations of the form (7.4) for k = l +
1; : : : ; D. The decoding step of the algorithm in [16] is a modi�cation of the
decoding in [70]. Instead of taking two candidates based on the l�B positions
with the largest and smallest number of satis�ed parity check equations, the
proposed algorithm creates candidates from the l � B + Æ positions having
the largest di�erence between the number of satis�ed and unsatis�ed parity
check equations. The parameter Æ is taken as a small integer.

When evaluating the parity check equations for di�erent values of the
B bits, it was shown in [16] that it is possible to use the Walsh transform,
see Section 2.3. When the improvement is applicable, the computational
complexity is reduced from O(D2B j
j) to O(D2B log j
j), where j
j is the
average number of parity check equations for each k = l+ 1; : : : ; D.

7.6 Comparisons Between Di�erent Algorithms

In this section the performance of the algorithms in Chapter 4 and Chapter 6
will be compared with the performance of the algorithms for fast correlation
attacks described in this chapter. The comparison is mostly done by simula-
tion results, but also some theoretical discussions are made.

In the simulations, a LFSR with length l = 40 is used. The same LFSR is
used as the target LFSR in many other simulations of fast correlation attacks,
e.g., [11,16,43�45,70]. The programs were all written in the C programming
language.

To make the comparisons as fair as possible, we compare the performance
of di�erent algorithms for the same value of the parameter t. The param-
eter t determines the complexity of the precomputation, and hence, when
comparing algorithms using the same value of t, the complexity of the pre-
computation is approximately the same. It is also important to note that
for some of the algorithms, e.g., the algorithm based on convolutional codes
and the algorithm in [13], the precomputation is done only for one position,
while for other algorithms the precomputation must be repeated to get all
parity check equations. As an example we can compare the complexity of the

7.6. Comparisons between di�erent algorithms 87

precomputation of the algorithm based on recovering of linear polynomials
(Chapter 6) for di�erent number of s vectors. Assume that the computa-
tional complexity of �nding all parity check equations for some algorithm
parameters with only one s vector is Cpre. Now, assume that we have the
same algorithm parameters, except that we increase the number of s vectors
to n. The computational complexity of the precomputation is then n � Cpre.

We start by comparing the results of the iterative algorithm for fast cor-
relation attacks described in Section 7.2 by Canteaut and Trabbia [11] with
the results of the algorithm based on convolutional codes in Chapter 4. The
parameter t was set to t = 3 and the length of the observed sequence varied
between 40000 and 400000. From [11] we get that the computational com-
plexity of the algorithm based on iterative decoding is CCT � 5tN

t

t! 2
�l. In

Table 7.1 we give the maximum p for which the algorithm converges to the
correct initial state with a probability close to one, and we also give the com-
putational complexity of the attack. The results in Table 7.1 were compared

N p CCT

40000 0.28 222:9

100000 0.36 227:8

400000 0.44 235:7

Table 7.1: Maximum p = 1=2 � � for the algorithm by Canteaut
and Trabbia, t = 3, l = 40, varying N .

with the results obtained by the attack in Chapter 4. By Theorem 4.4 the
value of the parameter B was calculated such that the algorithm succeeds for
the same value of p as in Table 7.1. The theoretical values were then veri�ed
by simulations. The results from the simulations are given in Table 7.2. The
complexity of the algorithm is given as Ccc � lN

t

t! 2
2B�l. If we compare the

N B p CCT

40000 6 0.28 220:6

100000 6 0.36 224:6

400000 7 0.44 232:6

Table 7.2: Maximum p = 1=2 � � for the algorithm based on
convolutional codes, t = 3, l = 40, varying N .

results in Table 7.1 with the results in Table 7.2 we see that the algorithm
based on convolutional codes has lower complexity than the algorithm based
on iterative decoding. As an example consider N = 100000 and p = 0:36.

88 7. A comparison with other proposed algorithms

From Table 7.1 we get a computational complexity of CCT � 227:8, and from
Table 7.2 we get a computational complexity of CCC � 224:6. Hence, we
see that in this particular case the algorithm based on convolutional codes
has approximately a factor of 8 lower computational complexity. This was
also veri�ed in the simulations where the algorithm using iterative decoding
took 30 seconds compared with the algorithm based on convolutional codes
that took 0.2 seconds. It is important to note that the two algorithms uses
di�erent operations and the implementation di�ers a lot. This makes it hard
to compare simulation times directly. However, the results clearly indicates
that the algorithm based on convolutional codes is more e�cient when t = 3.

A main advantage of the algorithm based on convolutional codes com-
pared with the algorithm based on iterative decoding is not the improved
complexity, but rather that by increasing the parameter B we can succeed in
cases when the algorithm in [11] will fail. As an example consider N = 40000
and t = 3. From Table 7.1 we get that the maximum value of the bit error
probability for a successful decoding is p = 0:28. If we let B = 11 in the
attack based on convolutional codes in Chapter 4 we can have a bit error
probability of p = 0:40 and still have a successful decoding.

Many of the recently proposed algorithms have a parameter B that can
be varied and sets the computational complexity and the performance of
the algorithms. Through simulations we compare the results from Chap-
ter 4 with the results from the algorithm by Chebyzhov, Johansson, and
Smeets [13], and the algorithm by Mihaljevi¢, Fossorier, and Imai [70]. The
algorithm proposed by Chose, Joux, and Mittel [16] is not considered since
the improvement reported in [16] comes from an algorithmic improvement
that can be applied also to the other algorithms for fast correlation attacks.
The simulations were made for N = 400000, t = 2, and N = 40000, t = 3,
with varying value of B.

In Table 7.3 the results from the algorithm based on convolutional codes
is tabulated. As before the complexity of the algorithm is calculated as Ccc �
lN

t

t! 2
2B�l. In Table 7.4 the results of the algorithm by Chebyzhov, Johansson,

N = 400000, t = 2 N = 40000, t = 3

B p Ccc B p Ccc
10 0.30 221:5 10 0.38 228:6

12 0.35 225:5 12 0.41 232:6

14 0.40 229:5 14 0.42 236:6

Table 7.3: Maximum p = 1=2 � � for the algorithm based on
convolutional codes.

and Smeets are tabulated. For this algorithm the computational complexity

7.6. Comparisons between di�erent algorithms 89

can be calculated as CCJS � Nt

t! 2
2B�l. The results of the algorithm by

N = 400000, t = 2 N = 40000, t = 3

B p CCJS B p CCJS
10 0.16 216:2 10 0.32 223:3

12 0.25 220:2 12 0.35 227:3

13 0.30 222:2 13 0.37 229:3

14 0.32 224:2 14 0.38 231:3

15 0.34 226:2 15 0.39 233:3

17 0.38 230:2 17 0.41 237:3

Table 7.4: Maximum p = 1=2�� for the algorithm by Chebyzhev,
Johansson, and Smeets.

Mihaljevi¢, Fossorier, and Imai [70] is tabulated in Table 7.5. From [70] we
get that the computational complexity of the algorithm can be calculated as
CMFI � (D�B)N

t

t! 2
2B�l, if we exclude the �nal correlation check suggested

in [70]. When the value of p is close to 0.5, the complexity of the �nal
correlation check is negligible compared with the the cost of the decoding
algorithm.

N = 400000, t = 2, D = 168 N = 40000, t = 3, D = 104

B p CMFI B p CMFI

10 0.35 223:2 10 0.41 229:3

12 0.40 227:2 12 0.43 233:3

14 0.44 231:2 14 0.44 237:3

Table 7.5: Maximum p = 1=2�� for the algorithm by Mihaljevi¢,
Fossorier, and Imai.

From the tables we see that for a �xed value of B, the algorithm by Mi-
haljevi¢, Fossorier, and Imai, can accept a larger value of p and still succeed.
However, for a �xed value of B the algorithms also have di�erent complexity.
Hence, it is more fair to compare the algorithms for a certain value of p and
see which of the algorithms that has the lowest computational complexity.
As an example, we pick N = 40000, t = 3, and p = 0:41. From Table 7.5
we get a computational complexity of 229:3 for the algorithm by Mihaljevi¢,
Fossorier, and Imai. If we compare this results with the results in Table 7.3
and Table 7.4 we see that the algorithm in [70] has the best performance.

The results of the algorithms above should also be compared with the
results of the algorithm based on reconstruction of linear polynomials in

90 7. A comparison with other proposed algorithms

Chapter 6. For the case N = 400000, t = 2, and p = 0:40 simulations were
made with the algorithm in Chapter 6. The result is given in Table 7.6.
The complexity of the algorithm is calculated as Clin � nNt

t! 2
2B�l. Hence,

B n Clin

12 512 229:2

11 1024 228:2

10 2048 227:2

Table 7.6: Complexity for the algorithm based on recovering of
linear polynomials, for N = 400000, t = 2, and p = 0:40.

we see that for B = 10 and n = 1024 the algorithm based on recovering of
linear polynomials has roughly the same performance as the algorithm by
Mihaljevi¢, Fossorier, and Imai.

We can also note that the improvement suggested by Chose, Joux, and
Mittel in [16] is also applicable to the algorithm in Chapter 6. Hence, we
conclude that the performance of algorithm based on recovering of linear
polynomials are among the fastest algorithms for fast correlation attacks.

7.7 Summary

In this chapter, some recent algorithms for fast correlation attacks have been
shortly presented, and their performance has been compared. The compari-
son was made from simulation results on a LFSR with length 40. From the
simulations we conclude that the algorithm based on recovery of linear poly-
nomials in Chapter 6 together with the algorithm in [70] is the fastest known
algorithm, if the improvements of [16] are incorporated, when applicable.
This is the same conclusion as given in [70].

We have not considered the memory complexity of the algorithms. How-
ever, all the algorithms, except the algorithms based on convolutional codes
and Turbo codes, have a memory complexity that is proportional to the
number of parity check equations that are used in the decoding algorithm.

8
Correlation Attack on

LILI-128

I
n this thesis several algorithms for fast correlation attacks have been pre-
sented. The algorithms were given in a general model were we have a

correlation of the form P (zi = ui) = 1� p. In this chapter we will show how
fast correlation attacks can be applied to nonlinear �lter generators. When
attacking nonlinear �lter generators, the nonlinearity of the Boolean function
will determine the correlation. The correlation attack on nonlinear �lters will
be exempli�ed by an attack on the LILI-128 keystream generator.

The LILI-128 keystream generator is a simple and fast generator that uses
two binary LFSRs and two functions to generate a binary pseudorandom
keystream sequence. LILI-128 is a speci�c cipher taken from the LILI family
of keystream generators, �rst introduced in [85]. LILI-128 was submitted
as a synchronous stream cipher candidate to the NESSIE project [23]. The
NESSIE project is a project within the Information Societies Technology
(IST) Programme of the European Commission, running years 2000-2002.
The main objective of the project is to put forward a portfolio of strong
cryptographic primitives that has been obtained after an open call and been
evaluated using a transparent and open process.

In the submission [23], the authors conjecture that the complexity of any
attack on LILI-128 is at least 2112 operations. We quote from [23], �this is a
conservative estimate, and the true level of security may be much higher�.

The remaining part of this chapter is organized as follows. We start
by giving a description of LILI-128 in Section 8.1. Correlation attacks on
nonlinear �lter generators are described in Section 8.2. In Section 8.3, we
demonstrate that it is possible to mount a fast correlation attack on LILI-128

91

92 8. Correlation attack on LILI-128

fc

LFSRc

fd

LFSRd

? ? ? ?

-

-ck zk

: : :

Figure 8.1: The LILI-128 keystream generator.

with complexity around 271 operations. This assumes a received sequence of
length around 128MByte and a precomputation phase with complexity 279

table lookups.

8.1 Description of LILI-128

In this section we give a brief description of the LILI-128 keystream gener-
ator. For a full description, see [23]. The LILI-128 keystream generator is
a clock-controlled nonlinear �lter generator. The generator consists of two
linear feedback shift registers, denoted by LFSRc and LFSRd, respectively.
The total length of the LFSRs is 128, and at initialization, the 128 bit key
provides the initial states of the LFSRs. The generator can be divided into
two subsystems. The �rst system produces an integer sequence that is used
to control the clocking of the second subsystem, which in turn produces the
keystream. The structure of LILI-128 is illustrated in Figure 8.1.

LFSRc is a LFSR of length 39 with the feedback polynomial

gc(x) = x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1:

Since gc(x) is primitive, the sequence produced by LFSRc is a maximum-
length sequence. The contents of stages 12 and 20 of LFSRc are inputs to
the function fc. The function fc takes two bits as input and produces an
integer ck, such that ck 2 f1; 2; 3; 4g. The value of ck is calculated as

ck = fc(y1; y2) = 2y1 + y2 + 1; k � 1:

The integer sequence c = c1; c2; : : : controls the clocking of LFSRd, in
the sense that LFSRd is clocked ck times before producing the output value
zk. Thus, from the de�nition of c, LFSRd is clocked at least once and at
most four times between the output of consecutive keystream bits.

8.2. Correlation attacks on nonlinear �lter generators 93

The length of LFSRd is 89 and the feedback polynomial of LFSRd is the
primitive polynomial

gd(x) = x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1:

The contents of 10 di�erent stages of LFSRd are inputs to a Boolean function
fd, fd : F102 ! F2 : An exact description of fd in table form is given in [23].
The output of fd is the keystream sequence z = z1; z2; : : :.

Finally, the stream cipher description is completed by adding the gener-
ator output z = z1; z2; : : : bitwise to the plaintext, obtaining the ciphertext.

8.2 Correlation Attacks on Nonlinear Filter

Generators

Consider a nonlinear �lter generator that consists of a LFSR with length l,
and a nonlinear �lter function f : Fn2 ! F, see Figure 8.2.

LFSR

f

zi

Figure 8.2: Principle of nonlinear �lter generators.

When applying a fast correlation attack to a nonlinear �lter generator we
start by determine the nonlinearity of the Boolean function f . Recall from
Section 2.3, that for a Boolean function, f : Fn2 ! F, the Walsh transform of
f(x) is de�ned to be the real-valued function F (!) over the vector space Fn2
given by

F (!) =
X
x

(�1)f(x)�!�x;

where a dot product of vectors x and ! is de�ned as x �! = x1!1+ : : :+xn!n.
Furthermore, the nonlinearity of a Boolean function f(x), denoted by Nf , is
the Hamming distance to the nearest a�ne function, i.e.,

Nf = min
g2An

dH(f; g);

94 8. Correlation attack on LILI-128

where f and g are the truth tables of f(x) and g(x), An is the set of a�ne
functions on n variables, and dH(f; g) is the Hamming distance between the
two vectors f and g, i.e., the number of positions where f and g di�er. The
nonlinearity of f(x) can be obtained from the Walsh transform as

Nf = 2n�1 �
1

2
max
!
jF (!)j:

Let fl be a linear function such that dH(f; fl) = Nf . Thus, if we use this
function to approximate f we get

P (f(x) = fl(x)) = 1�
Nf

2l
: (8.1)

We call the probability in (8.1) the identi�ed correlation.
In general, there exists several a�ne functions g such that dH (f; g) = Nf .

Denote the number of such a�ne equations by wf . Hence, we have wf
di�erent a�ne functions fl1 ; fl2 ; : : : ; flwf such that

P (f(x) = fli(x)) = 1�
Nf

2l
; 1 6 i 6 wf : (8.2)

When we replace f with fl, we can write the output from fl as a linear
combination of the initial state u0. Thus, we can �nd an l � N matrix G,
such that the output sequence v from fl can be written as v = u0G: Fur-
thermore, by using all wf a�ne functions ffl1 ; fl2 ; : : : ; flwf g with the same
correlation, we can get wf di�erent l�N matrices, denoted G1; G2; : : : ; Gwf .
By concatenation of these matrices we get the following l � wfN matrix,

G0 =
�
G1 G2 � � � Gwf

�
:

The matrix G0 can be viewed as a generator matrix of another linear code
C0. When we have the matrix G0 we can apply one of the algorithms for
fast correlation attacks and attack the generator. It is important to note
that for the code C0, the cyclic properties used when calculating parity check
equations for the algorithm based on convolutional codes in Chapter 4 does
not hold.

8.3 Correlation Attack on LILI-128

Now we are ready to proceed with an attack on LILI-128. Assume that
we have observed a keystream sequence of length N , z = (z1; z2; : : : ; zN).
Let the output sequence from fd be denoted by d = (d1; d2; : : : ; dM), where

8.3. Correlation attack on LILI-128 95

fd

LFSRd

? ?
-

-uk

dk

: : :

Figure 8.3: The data generation subsystem.

M > N , when LFSRd is regularly clocked. This is illustrated in Figure 8.3.
Furthermore, de�ne an integer sequence s = (s1; s2; : : : ; sN), sk 2 Z, where

sk =
kX
i=1

ci; k = 1; : : : ; N;

and ci 2 f1; 2; 3; 4g. Using the sequences d and s we can write the observed
sequence, z, as

zk = dsk ; k = 1; : : : ; N:

The principle of the attack is the following. Guess an initial state of
LFSRc, and calculate the decimating sequence c and the corresponding se-
quence s, where sk =

Pk
i=1 ci; for k = 1; : : : ; N . If the guessed initial state of

LFSRc is correct, the sequence s together with z will give us the N symbols
ds1 ; ds2 ; : : : ; dsN , since then z1 = ds1 , z2 = ds2 , etc.

Next, we use these N obtained symbols of d to �nd the initial state of
LFSRd. Denote the sequence produced by LFSRd (under regular clocking)
by u = (u1; u2; : : : ; uN). From [23], the ith output symbol from fd, di, is
given as

di = fd(ui�89; ui�88; ui�86; ui�79; ui�77; ui�69; ui�59; ui�45; ui�24; ui�9):

The next step is to apply a correlation attack and recover the initial state
of LFSRd, by using the method in Section 8.2.

The function fd used in LILI-128 has nonlinearity Nfd = 480 [23]. This
implies that we can �nd a linear function fl(x1; x2; : : : ; x10) = a1x1+a2x2+
: : : + a10x10 such that dH(fd; fl) = 480. Thus, if we use this function to
approximate fd, we get

P (fd(x) = fl(x)) =
1024� 480

1024
= 0:53125: (8.3)

96 8. Correlation attack on LILI-128

We call the probability in (8.3) the identi�ed correlation. To summarize we
have the following,

P (di = a1ui�89 + a2ui�88 + a3ui�86 + a4ui�79 + a5ui�77

+ a6ui�69 + a7ui�59 + a8ui�45 + a9ui�24 + a10ui�9) = 0:53125;

where the coe�cients ai, 1 6 i 6 10, can be determined from the exact
description of fd in [23].

The complete Walsh spectrum of the function fd is the following. There
are 720 di�erent ! 2 F102 with F (!) = 0, 64 values with F (!) = �32, and
240 values with F (!) = �64. This means that there exist 240 di�erent a�ne
functions fl1 ; fl2 ; : : : ; fl240 such that

P (fd(x) = fli(x)) = 0:53125; 1 6 i 6 240:

By using all 240 a�ne functions ffl1 ; fl2 ; : : : ; fl240g having the same cor-
relation, we can get 240 di�erent 89�N matrices, denoted G1; G2; : : : ; G240.
By concatenation of these matrices we get the following 89� 240N matrix,

G0 =
�
G1 G2 � � � G240

�
:

Let gi be the ith column of G0, i.e.,

G0 =
�
g1 g2 � � � g240N

�
:

We now follow the algorithm in Section 6.3 with n = 1, (which is equiva-
lent with the algorithm proposed in [13]). Let the algorithm parameter t be
t = 3, and let k < 89 be some �xed value. In the precomputation phase of
the attack we �nd all triples of columns, gi1 ;gi2 ;gi3 , such that

(gi1 + gi2 + gi3)
T = (�; �; : : : ; �| {z }

k

; 0; 0; : : : ; 0| {z }
89�k

); (8.4)

where � means an arbitrary value (not all zero).
To �nd all such triples we proceed as follows. Put each column of G0

in a list, sorted according to the value of the last 89 � k entries. For each
pair of columns gi1 ;gi2 , calculate the value of gi1 + gi2 in the last 89 � k
positions. Check if there exists a column gi3 such that (8.4) is satis�ed.
This is easily done since the columns are sorted. Thus, the running time
of the precomputation step is roughly N2 table lookups. Let the number
of triples satisfying (8.4) be m. Denote the indices of all such triples as
fi1(j); i2(j); i3(j)g, 1 6 j 6 m.

If i1, i2, and i3 satisfy (8.4), the sum ui1+ui2+ui3 is a linear combination
of only the �rst k symbols of the initial state of LFSRd. Thus,

(u
i
(1)
1

+ u
i
(1)
2

+ u
i
(1)
3
; u

i
(2)
1

+ u
i
(2)
2

+ u
i
(2)
3
; : : : ; u

i
(m)
1

+ u
i
(m)
2

+ u
i
(m)
3

)

8.4. Numerical result 97

forms an [m; k]-code, denoted by C3.
Using z we can calculate

Zj = z
i
(j)
1

+ z
i
(j)
2

+ z
i
(j)
3
; 1 6 j 6 m:

The vector (Z1; Z2; : : : ; Zm) acts as a received word for C3. Due to the
correlation between zi and ui, we can write zi = ui+ ei, where ei is a binary
random variable with P (ei = 1) = p = P (zi 6= ui) = 1 � 0:53125. It is
convenient to write the distribution of ei as P (ei = 1) = 1=2� �. Thus, for
the attack on LILI-128 in this paper we get � = 1=32 = 0:03125. De�ne the
error vector for C3 to be (E1; E2; : : : ; Em), where

Ej = e
i
(j)
1

+ e
i
(j)
2

+ e
i
(j)
3
; 1 6 j 6 m:

Since the ei's are independent random variables, it is clear that Ej , for
j = 1; 2; : : : ;m, are also independent binary random variables with error
probability

p3 = P (e
i
(j)
1

+ e
i
(j)
2

+ e
i
(j)
3

= 1) = 3p(1� p) + p3 = 1=2� 4�3 � 0:49988;

when � = 0:03125.
Finally, we decode the code C3 using Maximum Likelihood decoding (ML-

decoding). The algorithm returns a codeword from C3 that is closest to
(Z1; Z2; : : : ; Zm). From this codeword, we get k bits of the initial state of
LFSRd. The remaining bits of the initial state are determined in a similar
way. It is important to note that obtaining the remaining bits has negligible
complexity compared with determining the �rst k bits, see [13].

The method above has been described for a regularly clocked LFSRd.
Considering the case of LILI-128, when LFSRd is clocked using the sequence
c, we need to slightly modify the attack. Since P (ci = j) = 0:25 for j =
1; 2; 3; 4, LFSRd is clocked 2.5 times on average, between successive outputs.
Thus, if we have observed N keystream symbols, then LFSRd has been
clocked M times, where M � 2:5N . The sequence c determines which N
symbols from d1; d2; : : : ; dM that is used to produce the keystream z.

The precomputation in the algorithm takes roughly N2 table lookups.
However, in the precomputation phase of the correlation attack on LILI-128
we need to consider all 240M possible symbols when we construct the code
C3. Thus, the precomputation uses approximately (240M)2 table lookups.
Each possible initial state of LFSRc selects N positions, and from the set
of equations of the form (8.4) we keep only those that are valid, given the
guessed initial state of LFSRc.

98 8. Correlation attack on LILI-128

8.4 Numerical Result

From the analysis in [13] we get the following result. Let m be the average
number of parity check equations of C3 needed for a successful decoding. The
value of m can be calculated as

m � k �
2ln2

(2�)2t
; (8.5)

see [13]. In the attack presented we have � = 0:03125 and t = 3. The
matrix G0 has the size 89�240M , whereM = 2:5N . From the output of the
regularly clocked LFSRd we can expect that there are approximately

(2:5 � 240N)t

t!
� 2�89+k

linear 3-tuples satisfying (8.4). Each of these parity check equations is valid
with probability (1

2:5)
t for a given decimated sequence. Thus, for each pos-

sible decimation sequence we need on average

m =
(240N)t

t!
� 2�89+k

parity checks. Finally, if we let t = 3 the algorithm succeeds, see [13], if

N �
1

960
� (k � 12 � ln2)1=3 � ��2 � 2

89�k
3 : (8.6)

The decoding complexity of the attack can be calculated as follows. We
run through 2k codewords with length m. Thus, the decoding complexity is
of the order

2k � k �
2ln2

(2�)2t
:

For LILI-128 with l = 89, � = 0:03125, and t = 3 we obtain the results
tabulated in Table 8.1 for �nding the initial state of LFSRd.

As an example from Table 8.1, we choose k = 5 to get a complexity
of approximately 232. Since this decoding phase has to be repeated for
each possible initial state of LFSRc, we get that the average complexity
is 232 � 239 = 271. This requires an observed keystream sequence of approx-
imately 1 Gbit, or equivalent 128MB. The precomputation for this case is
approximately 279 table lookups.

This result can be compared with the claim in [23], where the authors
conjecture that the complexity of an attack is at least 2112 operations.

Note that the complexity is given as the average number of bit operations
in the decoding phase and the average number of table lookups in the precom-
putation. Thus, for the decoding phase, m bit operations is done signi�cantly

8.5. Summary 99

k N Cdec
1 230:5 225:5

3 230:3 229:1

5 229:9 231:8

7 229:4 234:3

10 228:6 237:8

15 227:1 243:4

20 225:6 248:8

25 224:0 254:1

Table 8.1: The required length and the decoding complexity to
recover the initial state of LFSRd given the initial state of LFSRc.

faster than m clock cycles. On the other hand, in the precomputation phase
we search for the existence of a certain vector in a large sorted list of vectors.
By using a hash table technique this can be done in almost constant time.
The list of vectors will be large, and thus it must be stored on hard disk
instead of the primary memory. However, it is important to point out that it
is possible to organize the precomputation such that the table lookups take
place in primary memory only. Hence, the precomputation time will take
c � 279 clock cycles, where c is a small constant.

8.5 Summary

In this chapter we have presented a method for correlation attacks on nonlin-
ear �lter generators. The correlation in the generator was determined from
the nonlinearity of the �lter function.

This method was used to attack LILI-128, one of the NESSIE stream
cipher proposals. The attack takes around 271 operations assuming a received
sequence of length around 128MByte using a precomputation phase with
complexity 279 table lookups.

100 8. Correlation attack on LILI-128

9
Correlation Attacks over

Extension Fields

B
inary LFSR based stream ciphers have often been used in cases where a
stream cipher that can be e�ciently implemented in hardware is needed.

However, their software implementation is rather slow. To get a stream cipher
that is fast also for software implementations, we can construct a stream
cipher with LFSRs over an extension �eld, F2n , where n is chosen to match
the word size of the intended platform, typically values are n = 8; 16; or 32. A
stream cipher construction over F2n can also be used in high speed hardware
implementations, since the LFSR outputs n bits in each clock cycle.

The algorithms for fast correlation attacks presented in this thesis were
de�ned over the binary alphabet. When attacking a stream cipher containing
a LFSR over F2n , one can also consider a correlation attack over F2n . In this
chapter we describe such an algorithm for correlation attacks over Fq , and
give a theoretical analysis of the performance of the algorithm.

The chapter is organized as follows. In Section 9.1 we show how a corre-
lation attack over Fq can be modelled as a decoding problem. Furthermore,
some known results for decoding random codes are given. In Section 9.2 we
generalize the algorithm in [13] to stream ciphers over F2n . A theoretical
analysis of the proposed algorithm is given in Section 9.3.

101

102 9. Correlation attacks over extension �elds

g(x) - -
?ui zi

ei
LFSR

Æ
��

Figure 9.1: Model of the correlation attack.

9.1 Model of the Attack

In Section 3.2 it was shown that correlation attacks over F2 can be mod-
elled as a decoding problem. In this section we generalize the results from
Section 3.2 to correlation attacks over Fq . Let u = u1; u2; : : : ; uN ; where
now ui 2 Fq ; i = 1; 2; : : : ; N , be an output sequence from an LFSR in
the keystream generator, and let z = z1; z2; : : : ; zN ; where zi 2 Fq ; i =
1; 2; : : : ; N , be an observed output sequence from a keystream generator in a
synchronous stream cipher.

Due to the correlation between ui and zi, we can describe each zi as the
output of a discrete memoryless channel, DMC, when ui was transmitted.
Assume that we have a correlation of the form,

zi = ui + ei; (9.1)

where ei is non-uniformly distributed. This is all shown in Figure 9.1. For a
DMC with the properties above the capacity, denote C, can be calculated as

C = log q +
X
e

P (ei = e) � log(P (ei = e));

where the capacity is reached for P (ui = u) = 1=q;8u 2 Fq . It can be shown
that we can construct an additive channel as above from any DMC.

Assume that the feedback polynomial, g(x), is known and that the de-
gree of g(x) is l: When consider LFSRs over Fq we have ql possible output
sequences. The LFSR output sequence, u; can be seen as a codeword from a
linear [N; l] q-ary code [57], refereed to as C: The cryptanalyst's problem can
be formulated as follows. Given a length N received word (z1; z2; : : : zN) as
output of the DMC, �nd the lengthN codeword from C that was transmitted.

When decoding random linear codes, a central method is Maximum Like-
lihood decoding, ML-decoding, i.e.,

û = argmax
u2C

P (zju):

9.2. Algorithm description 103

Since the correlation attack succeeds if we can decode correctly, it is
interesting to �nd the probability of error using ML-decoding. Let Pe be
the error probability of ML-decoding. Using random coding argument the
following theorem was proved by Gallager, Berlekamp, and Shannon.

Theorem 9.1 [[30]]: Let C denote the capacity of the channel and let the
code rate R = l log q=N satisfy R < C: Then

E[Pe] 6 2�N�(R);

where E[Pe] is the mathematical expectation of the error probability of ML-
decoding in the ensemble of random linear [l; N]-codes, �(R) is the random
coding exponent, and �(R) > 0 for all R < C: �

Thus, we assume that the correlation attack succeeds with a non-negligible
probability if R < C, where the code rate R = l � log q=N .

9.2 Algorithm Description

In previous section it was shown that a correlation attack over Fq can be seen
as a decoding problem. However, the complexity of decoding the code C is too
complex to get a practical attack for shift registers of high degree. Thus, the
goal is to remodel the correlation attack to �nd an easier decoding problem.
The algorithm proposed in this chapter is a modi�cation of the algorithm
in [13]. The di�erence is that we here consider q-ary codes instead of binary
linear codes. The principle of the algorithm is as follows. First, �nd a new
code, C2, which is easier to decode than C. This step is independent of the
keystream and, hence, can be made in advance. In the next step, we decode
using a received word obtained from the observed keystream sequence.

To get the new code, C2; we use the following observation. Let GLFSR be
a generator matrix for C: The LFSR output sequence can be calculated as

u = (u1; u2; : : : ; ul)GLFSR;

where (u1; u2; : : : ; ul) is the initial state of the shift register. Write the matrix
GLFSR as

GLFSR = (g1;g2; : : : ;gN);

i.e., gi is the i-th column of GLFSR:
Assume that we can �nd a pair of columns of GLFSR, gi1 , gi2 , such that

ai1gi1 + ai2gi2 = c1u1 + c2u2 + : : :+ ckuk; (9.2)

where k < l and ai1 ; ai2 ; c1; c2; : : : ; ck 2 Fq . Equation (9.2) de�nes a par-
ity check equation involving the �rst k positions of the initial state and two

104 9. Correlation attacks over extension �elds

more positions of the LFSR-output sequence. Search for all pairs with this
property, and denote the number of such equations by m. Denote the indices
of the n-th pair of columns with the properties in Equation (9.2) by i(n)1 ; i

(n)
2 .

Let Un = a
i
(n)
1
u
i
(n)
1

+a
i
(n)
2
u
i
(n)
2
, 1 6 n 6 m, then the sequence (U1; U2; Um) is

a codeword from an [m; k] q-ary linear code, denoted by C2: The received
sequence (Z1; Z2; : : : ; Zm) can be obtained from the keystream as Z1 =
a
i
(1)
1
z
i
(1)
1

+a
i
(1)
2
z
i
(1)
2
; Z2 = a

i
(2)
1
z
i
(2)
1

+a
i
(2)
2
z
i
(2)
2
; : : : ; Zm = a

i
(m)
1

z
i
(m)
1

+a
i
(m)
2

z
i
(m)
2

:

Since, zi1 = ui1 + ei1 , and zi2 = ui2 + ei2we get

Zn = a
i
(n)
1
z
i
(n)
1

+ a
i
(n)
2
z
i
(n)
2

= a
i
(n)
1

(u
i
(n)
1

+ e
i
(n)
1

) + a
i
(n)
2

(u
i
(n)
2

+ e
i
(n)
2

)

= a
i
(n)
1
u
i
(n)
1

+ a
i
(n)
2
u
i
(n)
2

+ a
i
(n)
1
e
i
(n)
1

+ a
i
(n)
2
e
i
(n)
2

= Un + a
i
(n)
1
e
i
(n)
1

+ a
i
(n)
2
e
i
(n)
2
:

Let En = a
i
(n)
1
e
i
(n)
1

+ a
i
(n)
2
e
i
(n)
2
. From our model of the DMC we can

calculate the distribution of En as,

P (En = en) =
X
x2Fq

P (e
i
(n)
1

= x) � P (e
i
(n)
2

= a�1

i
(n)
2

(en � a
i
(n)
1
x));8en 2 GF (q):

As for the other algorithms presented in this thesis, we do not need to
restrict the algorithm to use only pair of columns, any t-tuple can be used.
We describe the algorithm for a general t 6 2 in Figure 9.2.

9.3. Theoretical analysis 105

In: A length l LFSR over Fq with feedback polynomial g(x), observed
keystream z = z1; z2; : : : ; zN ; and parameters k and t.

Precomputation:

1. Find all combinations of the form,

tX
j=1

aijuij = c1 � u1 + c2 � u2 + : : :+ ck � uk:

Let the number of such sets be mt: Store the indices i1; i2; : : : ; it
together with c1; c2; : : : ; ck, and ai1 ; ai2 ; : : : ; ait .

Decoding phase:

2. Compute the received sequence,

(Z1 =

tX
j=1

z
i
(1)
j

; Z2 =

tX
j=1

z
i
(2)
j

; : : : ; Zmt
=

tX
j=1

z
i
(mt)
j

)

3. Decode using exhaustive search through all qk codewords.

Out: The �rst k symbols of the initial state.

Figure 9.2: A description of the proposed algorithm for correla-
tion attacks over extension �elds.

9.3 Theoretical Analysis

In the theoretical analysis we consider a channel with the following properties.
Assume that the received symbol can be written as zi = ui + ei; where the
distributions of ei is

P (ei = 0) = 1=q + Æ;

P (ei = e) = 1=q � Æ=(q � 1); 8e 2 Fq ; e 6= 0;

where q = 2n: Let Ei =
Pt

j=1 aijeij ; the distribution of Ei is then given as,

P (Ei = 0) = 1=q + (q=(q � 1))t�1Æt;

P (Ei = e) = 1=q � (q=(q � 1))t�1Æt=(q � 1); 8e 2 Fq ; e 6= 0:

106 9. Correlation attacks over extension �elds

Thus, we get a new channel of the form

P (Ei = 0) = 1=q + �;

P (Ei = e) = 1=q � �=(q � 1); 8e 2 Fq ; e 6= 0;

where � = (q=(q � 1))t�1Æt.
We can now extend the line of reasoning in [13] from the binary case to

the q-ary case. As the procedure is very similat to [13], we omit some details.
For a channel of the form above we can approximate the channel capacity,
C, as

C �
q2�2

2 ln 2(q � 1)
:

Denote by m̂t the expected number of equations found by the precomputation
step. The value of m̂t can be calculated as

m̂t =
(qt�1 � 1)

ql�k
�

�
N

t

�
:

For N large we can approximate m̂t as

m̂t �
N tqt�1�(l�k)

t!
:

Since the rate of the code is R = k log q=mt; and we need R < C we get the
following theorem.

Theorem 9.2: With given k; l; Æ; t, the required length N of the observed
sequence for the algorithm to succeed is

N �
q � 1

q2
� (2kt! ln 2 log q)1=tq

l�k
t Æ�2;

assuming N � mt. �

For q = 2 this expression is the same as the expression presented in [13] for
the binary case.

Example 9.1: Consider a stream cipher over F22 where a correlation be-
tween the keystream and the output of a LFSR with degree l = 30 has been
identi�ed. Assume that the correlation can be written as zi = ui + ei with
the following probability distribution of ei. P (ei = 0) = 0:4, P (ei = e) = 0:2,
e 6= 0: Let the algorithm parameters be k = 15 and t = 2. From Theorem 9.2
we get a required length of N � 2:5 � 106:

9.4. Summary 107

The code C can also be viewed as a [2N; 2l] binary code. Each element
x 2 F22 can be written as x = x(1)� + x(0); where x(1); x(0) 2 F2 and � is
a primitive element in F22 . Thus, l symbols from F22 are equivalent with
2l binary symbols. Assuming the same setting as above, we can transform
the correlation attack over F22 into a correlation attack over F2 with binary
shift register length 60. The correlation in the binary case will be p = 0:6,
i.e., Æ = 0:1. To reach the same complexity we choose k = 30 in the binary
case. With this parameter value we get from Theorem 9.2 a required length
of N � 7:5 �106 binary digits. Thus, we need approximately 3:7 �106 observed
keystream symbols over F22 using a binary attack, compared with 2:5 � 106

for an attack over F22 . �

9.4 Summary

In this chapter we have shortly described a correlation attack over Fq . The
attack is a generalization of the attack in [13] to Fq . By using random coding
bounds we gave a bound on the performance of the algorithm.

By an example it was shown that in some cases an attack over F2n is more
e�ective than an attack over F2 . It is also possible to construct examples,
where the opposite is true.

108 9. Correlation attacks over extension �elds

10
The General Decoding

Problem

I
n this chapter we leave fast correlation attacks and study what we call the
general decoding problem, with several applications in cryptology. The

general decoding problem is the problem of decoding a received word to the
closest codeword in an arbitrary code. It was shown by Berlekamp, McEliece,
and van Tilborg in [2] that the (decisional) general decoding problem is NP -
complete. Another related problem in coding theory is the problem of �nding
the minimum distance of a general code. Vardy showed in [95] that this
problem is NP -complete. Assuming P 6= NP , there are no algorithms that
solve the two problems in polynomial time.

The di�culty of the general decoding problem and the problem of �nd-
ing the minimum distance has been explicitly used in many cryptosystems,
such as Stern identi�cation scheme, McEliece public-key cryptosystem, etc.
Implicitly, the general decoding problem is important also in other cryp-
tographic systems, e.g., in stream ciphers, where a fast general decoding
algorithm would imply a fast correlation attack in any stream cipher where
a correlation can be identi�ed.

In Section 10.1 we give some notation from coding theory and formulates
the general decoding problem. In Section 10.2 a new probabilistic algorithm
is proposed. This proposed algorithm uses a time consuming Gaussian elim-
ination. In Section 10.3 we propose an improved variant of this algorithm
that circumvents this problem. The two algorithms were originally proposed
in [42, 46]. A theoretical study of the complexity of these two algorithms is
made in Section 10.4. In Section 10.5 we give some simulation results for the
algorithms and compare with the theoretical results. Some cryptographic

109

110 10. The general decoding problem

applications of the algorithm are presented in Section 10.6. Finally, we give
some conclusions in Section 10.7.

10.1 Notation and Problem Formulation

We start by giving some preliminaries from coding theory, and by de�ning
the general decoding problem. Let x and y be two binary vectors of length
n, x;y 2 Fn2 . The Hamming weight of x, wH (x); is the number of nonzero
positions of x. The Hamming distance between x and y, dH(x;y), is the
number of coordinates in which x and y di�er, i.e.,

dH(x;y) = jfij1 6 i 6 n; xi 6= yigj:

For binary vectors, x and y, the Hamming weight and the Hamming distance
is related as

dH(x;y) = wH (x+ y): (10.1)

Let C be an arbitrary [n; k] binary linear code. The minimum distance,
dmin, of the code C is de�ned as

dmin = min
c;c02C;c 6=c0

dH(c; c0):

Using Equation (10.1) the minimum distance of a linear code can also be
determined as

dmin = min
c2C;c6=0

wH(c):

If the minimum distance of a code is not known, we can sometimes estimate
it with the result of the Gilbert-Varshamov bound. The bound states that
there exists at least one [n; k] binary linear code with minimum distance dGV ,
where

dGV = maxfdj

d�1X
i=0

�
n

i

�
6 2n�kg:

We de�ne two types of decoding algorithms for linear codes [93].

De�nition 10.1: Let C be a general linear code, and let r 2 Fn2 . A general
decoding algorithm decodes the vector r into a codeword ĉ 2 C, such that
the Hamming distance, dH(ĉ; r); between ĉ and r is minimal,

ĉ = argmin
c2C

dH(c; r):

�

10.1. Notation and problem formulation 111

A general decoding algorithm is also called a complete decoding algorithm.

De�nition 10.2: Let r 2 Fn2 and let t be an integer. A t-bounded distance
decoding algorithm decodes (if possible) the vector r into a codeword ĉ, for
which

dH (ĉ; r) 6 t:

�

To the de�ned decoding algorithms several decoding problems considered
to be hard can be de�ned, see [2, 95]. It is important to note that the
underlying problem for both the McEliece public-key cryptosystem and the
Stern identi�cation scheme is not proven to be NP-complete.

In general, the output of a t-bounded distance decoding algorithm does
not equal the output of a general decoding algorithm. Furthermore, the
t-bounded distance decoding does not solve a problem proven to be NP-
complete.

Let Et be the set of all binary vectors of length n; such that wH(e) 6
t;8e 2 Et; i.e.,

Et = fe 2 F
n
2 jwH(e) 6 tg:

Assume that the received vector r = (r1; r2; : : : ; rn) is created as

r = v + e;

where v 2 C and e 2 Et. Furthermore, let c be the estimated codeword from
t-bounded distance decoding. From well-known result in coding theory [57]
we know that if

t 6

�
dmin � 1

2

�
;

where dmin is the minimum distance of C; then the result from the t-bounded
distance decoder equals the result of complete decoding. Furthermore, this
result is unique and c = v. For this setting of the general decoding prob-
lem several algorithms have been proposed [10, 55, 56, 60, 88]. These algo-
rithms give an upper bound on the complexity of di�erent cryptographic
problems related to the general decoding problem. As an example, consider
the McEliece cryptosystem. With the algorithm presented in [10] the av-
erage complexity of a successful attack on the McEliece cryptosystem with
parameter n = 1024; k = 524; t = 50 is 264:2.(in binary operations)

The model above assumes that the decoder takes one received word and
produces one corresponding estimate. However, for some applications it is
su�cient that we can correctly decode one received word from a set of many
received words. Using this fact we consider the following setting. Assume

112 10. The general decoding problem

that the decoder has a set of m received vectors, and successfully decoding
just one vector in this set (into its closest codeword) is su�cient.

The problem can then be formulated as follows.

Problem formulation: Assume a set of m received words from a binary
linear [n; k] code C with minimum distance dmin. Each received word
has at most t errors, where t 6 bdmin�1

2 c. Find one codeword c 2 C
such that it has distance at most t to one of the m received words.

This setting of the general decoding problem has also been studied in [12,94].

10.2 A Basic Algorithm

When considering the general decoding problem with one received word, it is
possible to use an algorithm for �nding low weight codewords, as a decoding
algorithm. The algorithm for �nding low weight codewords is applied in the
following way. Let G be a generator matrix for the code C and let r be the
received word. Create a new matrix G0 by extending G with r as a new row,

G0 =

�
G
r

�
:

The matrix G0 can then be regarded as a generator matrix of a code C0:
Suppose that we can �nd a codeword v 2 C0 such that wH(v) 6 t:

Since C0 and C are linear codes, we can obtain c by adding v to r; c =
v + r: Furthermore, dH (c; r) = wH(v): Thus, decoding an [n; k] linear code
is transformed to the problem of �nding a minimum weight codeword in an
[n; k+1] linear code. This method is simple and works �ne when it is used to
decode the vectors one by one. However, in the case when we have a set of m
received words, and look for an estimate for one of the received words, this
approach is not possible. We are restricted to using decoding algorithms.

The most e�ective t-bounded distance decoding algorithms are generaliza-
tions of information set decoding [93]. Let N = f1; 2; : : : ; ng be the set of all
coordinates, and let I = fi1; i2; : : : ; ikg be a subset with k elements. For the
subset I , let G = (V;W)I denote the decomposition of the generator matrix
G onto I , i.e., V = (Gi)i2I and W = (Gj)j2NnI , where Gi is the ith column
of G. This notation follows previous work in this area [10]. Assume some
ordering of I , (i1; i2; : : : ; ik). V is then the matrix

�
Gi1 Gi2 : : : Gik

�
,

where Gj is the jth column of G.

De�nition 10.3: Let C be a linear code and let G be a generator matrix for
C. An information set I , is a k-element subset of N such that V = (Gi)i2I
has full rank. The complementary set, J = N nI is called a redundancy set. �

10.2. A basic algorithm 113

The principle of information set decoding is the following. Randomly
select an information set and let rjI be the restriction of r to I; i.e.,

rjI = (ri1 ; ri2 ; : : : ; rik):

Since I is an information set there is exactly one codeword c 2 C such that
cjI = rjI : The codeword c is then a candidate to a codeword close to r: If
dH(c; r) 6 t we output c. On the other hand, if dH(c; r) > t we choose a new
information set and repeat this procedure until r is successfully decoded.

The algorithm that we propose is a modi�cation of information set de-
coding, where we allow rjI to have at most p errors, and the parameter p is
an integer, usually p = 1; 2, or 3. Furthermore, the algorithm uses an index
set L, where L � J . The process of choosing the candidate codewords is
somewhat similar to the Stern algorithm [88].

In: Generator matrix G, matrix with received words R, param-
eters t; p and l.

Out: Codeword c such that dH(c; ri) 6 t; where ri is a word in
R.

1. Randomly pick an information set I and form a systematic
generator matrix

G0 = (Ik; Z)I :

2. Decompose the matrix R onto I and add suitable rows from
G0 to get a new matrix with received words in the form

R0 = (0k; T)I :

3. Randomly select an l-element subset L of J = N n I:

4. For each row r0 in R0, calculate r0jL and store in a table
sorted according to the value of r0jL:

5. Let K be the set of all linear combinations of at most p rows
of G0. For each c0 2 K calculate c0jL and look in the table
for a received word such that r0jL = c0jL. If such a codeword
exists and if dH(r0; c0) 6 t we have a successful decoding. If
no pair (r0; c0) with dH(r0; c0) 6 t is found, go to 1.

Figure 10.1: A description of the basic algorithm

114 10. The general decoding problem

Assume that we have m received words and that each received word is
composed of a codeword from C corrupted by an error vector from Et. Fur-
thermore, assume that the noise is independent between di�erent codewords
and that each error vector has at most t errors. Write the m received words
as a matrix,

R =

0
BBB@

r1
r2
...
rm

1
CCCA ;

where r1; : : : ; rm are the di�erent received words.
Randomly pick an information set I , and let J be the redundancy set,

J = N nI: Let G = (VG;WG)I and R = (VR;WR)I denote the decomposition
of the matrices G and R onto I .

Since VG has full rank, we can use Gaussian elimination to form a matrix

G0 = (Ik ; Z)I ;

where Ik is the k�k identity matrix. The matrix G0 is a systematic generator
matrix for a code C0 equivalent to C: Add suitable rows from G0 to R such
that the �rst k positions of R = (VR;WR)I will be all zero. Denote this new
matrix by R0;

R0 = (0k; T)I ;

where 0k is the k�k zero matrix. When adding codewords to R0, the number
of errors in each received word is not changed. Hence, if we manage to decode
and get the error vector for one received word in R0, then the error pattern
for the corresponding received word in R can be obtained.

De�ne a candidate set K as the set of all codewords in C0 which have
weight at most p in the �rst k positions, i.e.,

K = fc0 2 C0jwH(c0jI) 6 pg:

The codewords in K correspond to the linear combinations of at most p rows
from G0. Now, consider a row in R0; denoted by r0: To �nd a candidate c0

from K; we use an index set L = fj1; j2; : : : ; jlg with l coordinates from J .
A candidate codeword c0 2 K is then given as a codeword from K such that
r0jL = c0jL: To �nd a codeword of this form we use the following method. For
each row in R0; calculate r0jL and store in a table sorted according to the
value of r0jL: The candidate set K is created by taking all linear combinations
of at most p rows of G0. For each candidate codeword c0; calculate c0jL and
look in the table for a received word such that r0jL = c0jL. If such a codeword
exists and if dH(r0; c0) 6 t we have a successful decoding. The algorithm is
given in Figure 10.1.

10.3. An improved algorithm 115

10.3 An Improved Algorithm

The proposed algorithm in the previous section makes one Gaussian elimina-
tion on an k�n matrix in each iteration. Since this Gaussian elimination and
the following update of the matrix R use many operations, we also propose
another approach. To remove this expensive step we proceed as done in the
modi�cation of the Stern algorithm in [10].

Instead of randomly choosing an entirely new information set in each
iteration, we create a new information set by modifying only one element
of the previous one. To update the information set we use the following
observation from [10].

Let I be an information set and let G = (Ik ; Z)I be a systematic generator
matrix. Choose � 2 I , � 2 J , and let I 0 = (I n �) [f�g: Then I 0 is an
information set if and only if z�;� = 1; where Z = (zi;j)i2I;j2J .

Thus, we create a new matrix G0 = (Ik; Z
0)I0 by randomly choosing

� 2 I and � 2 J such that z�;� = 1. Then the �th and the �th columns
of G = (Ik ; Z)I and R = (0k; T)I are exchanged. Furthermore, suitable row
operations are performed to get matrices of the form G0 = (Ik ; Z

0)I0 and
R0 = (0k; T

0)I0 .
After this modi�cation for creating the new information set, the algorithm

proceeds as previously, see Figure 10.2.
When m is small, the algorithm presented by Canteaut and Chabaud

in [10] will perform better than the algorithm in Figure 10.2. However, the
algorithm in Figure 10.2 can be slightly modi�ed to make it e�cient also for
small values of m. We introduce two new parameters k0 and p0, where k0 6 k
and 0 6 p � p0 6 k � k0. Step 4 and 5 of the algorithm in Figure 10.2 are
then modi�ed as follows.

4'. Split the rows of Z 0 into two parts, Z 0
1 and Z 0

2, where Z
0
1 is the �rst k

0

rows of Z 0. For each linear combination of p0 rows of Z 0
1, calculate c

0
1jL

and store in a table sorted according to the value of c01jL.

5'. For each row r0 of R0 and for each linear combination c02 of p� p
0 rows

of Z 0
2, calculate r

0
jL+ c02jL and look in the table for a codeword c01 such

that c02jL = r0jL + c02jL. If such a 3-tuple exists and if wH(c01 + c02 +

r0) 6 t we have a successful decoding. If no 3-tuple (c01; c
0
2; r

0) with
wH (c01 + c02 + r0) 6 t is found, go to 1'.

For p0 = p=2 and k0 = k=2 the modi�ed algorithm exactly corresponds to
the algorithm presented in [10], and for p0 = p and k0 = k it corresponds to
the algorithm in Figure 10.2. For large values of m, the optimal values of p0

and k0 are p0 = p and k0 = k.

116 10. The general decoding problem

In: Generator matrix G = (Ik ; Z)I , matrix with received words
R = (0k; T)I , parameters t; p and l.

Out: Codeword c such that dH(c; ri) 6 t; where ri is a received
word in R:

1'. Choose � 2 I and � 2 J such that I 0 = (I n �) [f�g is an
information set. Exchange the �th and �th columns of G.
Form a systematic generator matrix

G0 = (Ik; Z
0)I0 :

2'. Exchange the �th and �th columns of R and form a matrix
of the form

R0 = (0k; T
0)I0 :

3. Randomly select an l-element subset L of J = N n I:

4. For each row r0 in R0, calculate r0jL and store in a table
sorted according to the value of r0jL:

5. Let K be the set of all linear combinations of at most p rows
of G0. For each c0 2 K calculate c0jL and look in the table
for a received word such that r0jL = c0jL. If such a codeword
exists and if dH(r0; c0) 6 t we have a successful decoding. If
no pair (r0; c0) with dH(r0; c0) 6 t is found, go to 1'.

Figure 10.2: A description of the modi�ed algorithm

10.4 Analysis of the Algorithms

In this section we present the work factor for the two algorithms proposed
in Figure 10.1 and Section 10.2. The work factor is given as the average
number of elementary bit operations for a successful decoding. This measure
of complexity has appeared in most previous work in this topic, see e.g., [10,
12, 55]. To derive the work factor we start by deriving an expression for the
average number of iterations. Then we analyze the number of bit operations
in each iteration. The analysis is essential for �nding the values of l and p
for which the running time of the algorithms is minimal. In the derivation
we assume that the weight of the error vector is exactly t.

Before we derive the complexity of the two algorithms we make a note
regarding the implementation of the two algorithms. In the description of the

10.4. Analysis of the algorithms 117

algorithms we used a systematic generator matrix G0 = (Ik ; Z)I and a matrix
R0 with the received words of the form R0 = (0k; T)I . When implementing
the algorithms it is not necessary to store the �rst k columns of the two
matrices. This will save memory and it will also decrease the computational
complexity of the two algorithms. Hence, we assume in this section that the
algorithms are implemented such that only the parts Z and T of the matrices
G0 and R0, respectively, are stored in the memory.

The basic algorithm

First start with the algorithm in Section 10.2. Assume that m = 1: Then the
probability of a correct decoding is given by the following lemma.

Lemma 10.1: Assume that only one word is received. The probability that
the basic algorithm decodes this received word correctly in one iteration,
denoted P1, is

P1 =

pX
i=0

�
k
i

��
n�k�l
t�i

��
n
t

� :

�

Proof: Let r be a received word, r = c + e, where c 2 C and wH (e) = t.
Assume that wH(ejI) = i. Then for the correct codeword, c; dH(cjI ; rjI) = i:
If i > p the algorithm can not correct this error pattern, but if i 6 p the
received word will be correctly decoded if wH(ejL) = 0.

Hence, the probability of successful decoding in one iteration is the prob-
ability that there are p or less errors in the �rst k positions and no errors in
the next l positions.

There are
�
k
i

�
di�erent possibilities for i errors in k positions, and

�
n�k�l
t�i

�
possibilities that the remaining t� i errors are in the last n� k� l positions.
Hence, there are �

k

i

��
n� k � l

t� i

�
di�erent error patterns that can be decoded successfully in one iteration.
The total number of error patterns with t errors is

�
n
t

�
, and the probability

that a correct decoding is obtained in one iteration is

P1 =

pX
i=0

�
k
i

��
n�k�l
t�i

��
n
t

� :

�

118 10. The general decoding problem

If we instead have m received words in the set R, we de�ne the algorithm
to be successful if at least one word is correctly decoded. Let Nalg be the
average number of iterations for a correct decoding given m received words.
The value of Nalg is given by the following theorem.

Theorem 10.2: The average number of iterations for the basic algorithm
is

Nalg =
1Pm

i=1

�
m
i

�
(�1)(i+1)P i

1

; (10.2)

where P1 is given by Lemma10.1, and m is the number of received words. �

Proof: De�ne Pm as the probability that the algorithm is successful, and PF
the probability of a failure. Clearly, Pm = 1� PF . Since the error patterns
in the di�erent received words are independent we get that PF = (1�P1)

m:
Hence,

Pm = 1� (1� P1)
m =

mX
i=1

�
m

i

�
(�1)(i+1)P i

1;

and Nalg = 1=Pm: �

We are interested in the complexity given as the average number of bit
operations for a successful decoding. To be able to calculate this complexity
we need to know the complexity of each iteration. Let Calg be the expected
number of bit operations of one iteration.

Theorem 10.3: The computational complexity of one iteration is

Calg = nk2=2 +mnk=2 +

pX
i=1

�
k

i

�
il+ml +

Pp
i=0

�
k
i

�
mn(i+ 1)

2l
: (10.3)

�

Proof: In each iteration the algorithm performs the following operations.
A Gaussian elimination which takes nk2=2 operations. Then we add code-
words to make R all-zero in the �rst positions. This takesmkn=2 operations.
To check the weight in the l positions of G and R; it takes

Pp
i=1

�
k
i

�
il and

ml operations respectively. The last step consists of checking the weight for
the entire codeword if the weight in the l positions is the same. On average
we have

Pp
i=0

�
k
i

�
m=2l pairs of codewords and received words for which the

weight is the same. For each of these pairs the calculation of the distance
takes n(i+ 1) operations. �

10.4. Analysis of the algorithms 119

Let Walg denote the average total complexity, or work factor, for a suc-
cessful decoding. The value of Walg is calculated as

Walg = Nalg � Calg ;

where Nalg and Calg are given by (10.2) and (10.3) respectively.

The modi�ed algorithm

For the improved algorithm presented in Section 10.3, the information sets
in di�erent iterations are dependent, and thus, so are the number of errors
in them. However, the algorithm can be modelled by a discrete time random
process. In fact, by using the same methods as in [10] we will show that the
algorithm can be described as a Markov chain. The following analysis will
be similar to the analysis in [10].

Assume that we have one received word r = c+e. Furthermore, let Ii be
the information set and Li the index set in the ith iteration. The ith iteration
can then be represented by a random variable Xi which corresponds to the
number of errors of r in Ii, i.e., wH (ejI

i
). This random variable takes its

values in the set f0; 1; : : : ; tg: When Xi 6 p we also have the possibility that
the algorithm succeeds with the decoding. Hence, we introduce a success
state and denote this state by S: The state space of the stochastic process
fXigi2N is then

E = fSg [f0; 1; : : : ; tg:

A Markov chain is a discrete stochastic process in which the distribution
at any time in the future depends only on the current state of the process,
and not on how that state was reached. For a Markov chain, the following
condition is satis�ed,

P (Xi = uijXi�1 = ui�1; Xi�2 = ui�2; : : : ; X0 = u0) =

P (Xi = uijXi�1 = ui�1):

A homogeneous Markov chain is a Markov chain where the conditional
probabilities

P (Xi = vjXi�1 = u); u; v 2 E ;

do not depend on i. Denote the transition probability P (Xi = vjXi�1 = u)
by pu;v; and the transition matrix by P; where P = (pu;v)u;v2E :

Since the new information set Ii only depends on the previous informa-
tion set Ii�1, and the index set L is randomly chosen, the stochastic process
fXigi2N, de�ned above, is a homogeneous Markov chain. The Markov chain
is completely determined by the transition matrix P and the initial proba-
bility vector �0 = (P (X0 = u))u2E :

120 10. The general decoding problem

To express the di�erent transition probabilities we de�ne �(u) to be

�(u) = P (Xi = SjwH(ejI
i
) = u);

where wH(ejI
i
) is the number of errors in the information set Ii. The value

of �(u) is given by the probability that we choose all l positions of L without
errors, i.e.,

�(u) =

(
(n�k�t+ul)
(n�kl)

; u 6 p;

0; u > p:
(10.4)

The transition probabilities can then be calculated as

pu;u = (1� �(u))(
k � u

k
�
n� k � t+ u

n� k
+
u

k
�
t� u

n� k
); u > 0;

pu;u�1 = (1� �(u� 1))(
u

k
�
n� k � t+ u

n� k
); u > 1;

pu;u+1 = (1� �(u+ 1))(
k � u

k
�
t� u

n� k
); u > 0;

pu;S = (�(u)(
k � u

k
�
n� k � t+ u

n� k
+
u

k
�
t� u

n� k
)

+�(u� 1)(
u

k
�
n� k � t+ u

n� k
)

+�(u+ 1)(
k � u

k
�
t� u

n� k
); u > 0;

pS;S = 1;

pu;v = 0; otherwise.

The initial state probabilities are given by the vector �0(u) and can be cal-
culated to the following expressions

�0(u) =

8>>>>><
>>>>>:

(1� �(u))
�
t
u

��
n�t
k�u

��
n
k

� ; u 6= S;

pX
u=0

�(u)
�
t
u

��
n�t
k�u

��
n
k

� ; u = S:

(10.5)

A maximal state subset which cannot be left once it is entered is called
a persistent space [50]. Since the persistent space of this Markov chain con-
sists of only the state S, and all other states are non-persistent, the Markov
chain associated with the algorithm is an absorbing Markov chain. Since the
probability that an absorbing Markov chain is in an absorbing state after n
steps tends to 1 as n tends to in�nity, we deduce that the proposed algorithm
converges.

10.4. Analysis of the algorithms 121

Let Q be the matrix containing the transition probabilities between the
nonpersistent states. The matrix P can then be written as

P =

�
Q P �

0 1

�
;

where P � is a column vector containing the transition probabilities from a
nonpersistent state to S: Now we use some basic results from Markov chain
theory. De�ne the fundamental matrix, �rst introduced in [50], as

R =

1X
m=0

Qm = (Id �Q)�1; (10.6)

where Id is the d � d identity matrix. For a Markov chain with an absorb-
ing state, fundamental matrix R and initial state probabilities p0(u); the
expected number of iterations until the Markov chain reaches the persistent
state, denoted by M , is given as [50]

M =
X
u

p0(u)
X
v

Ru;v : (10.7)

Let Nmod be the average number of iterations for a successful decoding using
the modi�ed algorithm. Using (10.7), Nmod is given as

Nmod =
tX

u=0

�0(u)
tX

v=0

Ru;v ; (10.8)

where Ru;v is the element in row u and column v of R calculated by (10.6)
and �0(u) is the initial state probabilities calculated by (10.5).

To calculate the total work factor we also need the number of operations
in each iteration. The same methods that were used for the original algorithm
can be used and the result is given by the following theorem.

Theorem 10.4: The complexity in one iteration is

Cmod = nk=2 +mn=2 +

pX
i=1

�
k

i

�
il +ml+

Pp
i=0

�
k
i

�
mn(i+ 1)

2l
: (10.9)

�

Proof: If we compare the modi�ed algorithm with the original algorithm we
see that instead of a Gaussian elimination we only swap one position in the
information set. Hence, in the �rst step we have k=2 rows of G and m=2 rows

122 10. The general decoding problem

of R that has 1 in the column that we swap. The update of G and R then
takes in average nk=2 +mn=2 operations. After step 10 the two algorithms
use the same operations and the corresponding complexity can be taken from
Theorem 10.3. �

To get the average number of iterations of the algorithm when we have
a set of m received words, we need the probability that the algorithm is
successful after N iterations given one codeword. Denote this probability by
pN : From Markov chain theory we get that this probability can be written
as

pN =
X
u

�0(u)(L
�1�NL)u;S ;

where � is a diagonal matrix and L is a matrix such that P = L�1�L: Since
the error patterns in the di�erent received words are independent, we get
that the probability that we succeed after N iterations, given m received
words, denoted pN;m, is

pN;m = 1� (1� pN)m:

This results in

pN;m =

mX
i=1

�
m

i

�
(�1)(i+1)

 X
u

�0(u)(L
�1�NL)u;S

!i

:

However, since this expression is rather complex, one can use the following
observation. If the average number of iterations given one received word is
large, then we can approximate the average number of iterations given m
received words as Nmod

m ; where Nmod is given by (10.8). Hence, we get that
the total work factor for the modi�ed algorithm with a set of m received
words is given as

Wmod �
Nmod � Cmod

m
;

where Cmod is given by (10.9) and Nmod is given by (10.8).

10.5 Simulation and Theoretical Results

In order to check the behavior of the two proposed algorithms we have made
simulations for the problem of decoding general linear codes. All simulations
were made on a PC with a Pentium II processor running Linux as operating
system. The simulation programs were written in C.

First we used a [256,128] linear code. The number of errors to correct was
set to t = 14; and the number of received wordsm varied between 1 and 1024:

10.5. Simulation and theoretical results 123

m p l Nalg log2(Walg) Nsim log2(T)

1 2 4 280 29.4 281 10.6
2 2 5 155 28.6 154 9.8
4 2 6 86 27.8 86 9.0
8 2 7 48 27.0 49 8.2
16 2 8 27 26.2 28 7.5
32 2 9 15 25.5 16 6.8
64 2 9 7.9 24.9 7.9 6.1
128 2 10 4.6 24.5 4.7 5.8
256 2 11 2.8 24.3 2.8 5.7
512 2 11 1.7 24.3 1.7 6.3
1024 2 13 1.4 24.7 1.3 6.8

Table 10.1: Simulation results for a [256,128] code using the basic
algorithm

The average number of iterations in the simulations were compared with the
theoretical results given by the previous section. In Table 10.1 the simulated
average number of iterations Nsim and time T in milliseconds for a correct
decoding is given for the basic algorithm. Furthermore, Table 10.1 shows
the average number of iterations Nalg and the work factor Walg given by the
theoretical analysis in the previous section. The algorithm parameters p and
l are chosen such that the work factor is minimal given the code parameters
and the number of received words. Note that the values for the time and work
factor in Table 10.1 are given as logarithms using base 2. The corresponding
results for the modi�ed algorithm are presented in Table 10.2.

From Table 10.1 and Table 10.2 we can see that the time for a successful
decoding decreases with a factor of approximately 27 when the number of
received words increases from 1 to 1024. The fastest decoding algorithm for
m = 1 presented in [10] has a work factor of 226:5: Hence, we see that for
m = 1 the modi�ed algorithm in Section 10.3 has a work factor of a factor
of 4 higher, but when m increases the work factor can be up to a factor of
50 lower.

We observe that when the number of received vectors increases, the op-
timal value of p decreases. It also seems that the value of l increases for a
given p when m increases.

When comparing the running times from an implementation with the
theoretical results it is important to keep in mind that the theoretical analysis
is based on bit operations, while the computer implementations often use 32-
bit word representation. Hence, some of the operations can be made on

124 10. The general decoding problem

m p l Nmod log2(Wmod) Nsim log2(T)

1 1 7 20118 28.4 20105 10.9
2 1 8 10255 27.5 10190 10.1
4 1 8 5127 26.5 5095 9.1
8 1 9 2619 25.6 2612 8.3
16 1 10 1341 24.7 1333 7.6
32 1 11 688 23.9 668 7.0
64 1 12 354 23.2 344 6.5
128 1 12 177 22.7 167 5.8
256 1 12 89 22.3 79 5.4
512 2 16 8.5 21.7 3.5 3.3
1024 2 17 4.6 21.1 1.8 3.7

Table 10.2: Simulation results for a [256,128] code using the mod-
i�ed algorithm

32 bit simultaneously and the simulation times may be di�erent from the
theoretical values.

Since the improved algorithm in Section 10.3 has much lower complexity
than the basic algorithm in Section 10.2, the rest of the presented results is
given for the modi�ed algorithm.

To check the behavior when the length of the codewords increases we
have calculated the work factor for di�erent rate 1=2 codes, i.e., k = n=2:
Furthermore, we use two di�erent cases depending on the number of received
words. The �rst case uses one received word, m = 1, and the second case
uses m = 220. The length of the codewords varies between 256 and 1024
and Figure 10.3 shows the work factor for the di�erent codes using the mod-
i�ed algorithm. The parameter t was determined by the Gilbert-Varshamov
bound.

From Figure 10.3 we can see that the gain in performance that can be
obtained when increasing the number of received words increases when the
length of the codewords increases. As a particular example consider the
following. When n = 256 the gain is 27 and for n = 1024 the gain has
increased to 215: For large n the number of received words must be large to
be able to have maximal gain, but most of the gain is obtained already for
small values of m.

Another property to study is the algorithmic behavior for di�erent rates,
i.e., let k vary for the same value of n: In Figure 10.4 we give the theoretical
performance for di�erent codes with n = 512, k varies from 64 to 448, and
t was determined by the Gilbert-Varshamov bound. The �gure shows the

10.5. Simulation and theoretical results 125

256 384 512 768 1024
20

30

40

50

60

70

80

n

lo
g 2 W

m=1
m=220

Figure 10.3: The theoretical work factor for di�erent rate 1=2
codes.

results both for m = 1 and m = 220.
Decoding one word from a set of m received words is easier than decoding

one received word. Nevertheless, for some cryptographic applications it is
easy to get a list of m received words and decoding only one of them is
equivalent to breaking the system.

To see how much we gain by increasing the value of m, we compare the
complexity of the proposed algorithm with the results obtained by Stern's
algorithm [88] and the algorithm proposed by Canteaut and Chabaud in [10],
which currently are the most e�cient algorithms for m = 1. We pick the
following code parameters, n = 1024, k = 525, t = 50, and n = 512, k = 512,
t = 56. This size of the parameters corresponds to the code parameters for
the McEliece cryptosystem and the Stern identi�cation scheme, respectively.
In Table 10.3 we give the complexity for the modi�ed algorithm for di�erent
values of m.

As an example from Table 10.3 consider the McEliece cryptosystem.
From [10] we get the work factor 264:2 and using the algorithm in Section 10.3
we get the work factor 268:1 for m = 1 and 249:0 for m = 240. Hence, we see
that when m is small the algorithm in [10] is better but when m > 32 the
algorithm in Section 10.3 gives better performance. For this particular code
the value of m that gives best performance was m = 240: However, already
for m = n the proposed algorithm has a factor of 25 lower complexity than
the algorithm in [10].

126 10. The general decoding problem

64 128 192 256 320 384 448
15

20

25

30

35

40

45

k

lo
g 2 W

m=1
m=220

Figure 10.4: The theoretical work factor for di�erent rates when
n = 512.

Cryptosystem
Decoding McEliece Stern
Algorithm n = 1024, k = 524, t = 50 n = 512, k = 256, t = 56

[88] 269:9 273:5

[10] 264:2 269:9

m = 1 268:3 272:6

m = 32 264:0 270:0

m = 256 261:4 267:5

m = 512 260:6 266:9

m = 1024 259:7 266:4

m = 215 256:9 265:0

m = 230 250:7 260:8

m = 240 249:4 259:2

Table 10.3: Comparison of the complexity of di�erent algorithms
for attacks on the McElice cryptosystem and the Stern identi�ca-
tion scheme.

10.6. Some cryptographic applications 127

10.6 Some Cryptographic Applications

In this section we shortly describe some cryptographic applications for which
the proposed decoding algorithms are applicable.

The Stern identi�cation scheme

At Crypto'93 Stern proposed an identi�cation scheme based on syndrome
decoding, [89]. All users share a parity check matrix H for a binary [n; k]
linear code, denoted by C. Each user has secretly chosen a vector, s, of
Hamming weight p, where the parameter p is an integer slightly below the
expected minimum distance of the code. The public key, or identi�cation,
is computed as i = sHT . By an interactive zero-knowledge protocol, any
user can identify himself to another by proving he knows s without revealing
it. If an adversary can �nd a weight p vector with syndrome i, he can
identify himself as an authorized user and the system is broken. The original
parameters proposed in [89] are n = 512, k = 256, and p = 56.

To apply the proposed algorithm for attacking the Stern identi�cation
scheme with m users, one proceeds as follows. Write the parity check matrix
as H = (P T ; In�k). A generator matrix G for C is then given as G = (Ik ; P).
For a given syndrome i we can form the word r = (0; i). Clearly, rHT = i.
Assume we have a codeword c 2 C such that dH (c; r) = t. Then let

ŝ = c+ r = c+ (0; i):

The syndrome of ŝ is then given as

ŝHT = (c+ (0; i))HT = cHT + (0; i)HT = 0+ i = i:

Thus we have found a weight t vector, namely ŝ = (c + (0; i)), such that its
syndrome is i. Thus, decoding the received word (0; i) can give us the desired
vector. Now, for each user, we form the corresponding vector rj = (0; ij).
The matrix R is then created by using vector rj as the jth row of R. Finally,
apply the proposed algorithm.

From Table 10.3 we �nd that in a system with m = 1024 users, the
average complexity for �nding one vector with desired properties is 266:4.
This can be compared with 269:9 which is obtained by the algorithm in [10].

A dual version of the Stern identi�cation scheme that uses a generator
matrix of the code was proposed by Véron [96]. In order to reduce the
number of transmitted bits, he proposed the parameters n = 512, k = 120,
and p = 114. Also here we can apply the proposed algorithm.

128 10. The general decoding problem

The McEliece public-key cryptosystem

See [60] for a complete description of the McEliece cryptosystem. McEliece
cryptosystem uses an [n; k] linear code C from a family of codes for which
an e�cient decoding algorithm exists. In the original proposal Goppa codes
were suggested. Furthermore, assume that the code can correct t errors. The
private key consists of an [n; k] linear binary code C, a random k � k binary
invertible matrix S, and a random n� n permutation matrix P .

The public key is the k � n matrix G0 = SGP , where G is a generator
matrix of the secret code C. Thus, the matrix G0 is a generator matrix for a
linear code C0 equivalent to C.

The encryption of a k bit message, m, is given as

r = mG0 + e;

where e is a random error pattern with wH(e) = t. The n bit vector r is
then transmitted to the receiver.

To decrypt, the receiver starts by creating the vector

y = rP�1 = mSG+ eP�1:

Using the fast decoding algorithm for C the vector mS is obtained. Finally,
the message is given by m = (mS)S�1.

The ciphertexts in the McEliece cryptosystem correspond to words of the
public code C0 with t errors. Thus, if we can �nd a decoding method for
C0, the system is broken. To apply the proposed algorithm we assume that
m ciphertexts are given as m vectors and that decrypting any of them is
su�cient for success in the attack. By putting the vectors in a matrix R, the
proposed algorithms can be applied.

For the original parameters n = 1024, k = 524, and t = 50 the average
complexity for breaking the system givenm ciphertexts is given in Table 10.3.

Niederreiter proposed a dual version of this system, see [73]. The plaintext
in the Niederreiter cryptosystem is an n bit vector with weight t, and the
associated ciphertext is the syndrome. Also here we can apply the proposed
algorithms.

A McEliece-based digital signature scheme

In [21] Courtois, Finiasz, and Sendrier proposed a method to achieve a dig-
ital signature scheme based on the McEliece public key cryptosystem. In
the paper three di�erent versions of the signature scheme are proposed. The
versions di�er in the length of the signature, but the underlying decoding
problem is the same. As in the McEliece public key cryptosystem, the pri-
vate key is a binary linear [n; k]-linear code, denoted by C, for which a fast

10.6. Some cryptographic applications 129

decoding algorithm exists. The public key is a parity check matrix, H , of a
code equivalent to C.

To sign a messagem the sender �rst applies a secure public hash function
and hashes the message to a binary vector of length n � k, y = h(m). The
signer uses the fast decoding algorithm of C, known only by the signer, to �nd
an n bit vector x of weight t such that the syndrome of x is y. (The signature
is obtained by applying a public compression function to x.) When a receiver
veri�es a given signature he proceeds as follows. From the signature x the
syndrome y is calculated, y = HxT . This syndrome is then compared to the
hash value h(m), obtained by hashing the message m.

To successfully attack the system and forge a signature on a random
message m, the attacker must �nd a vector x such that the syndrome is
h(m). Thus, the security of the system is equivalent to syndrome decoding.

In the proposal [21] the following parameters of C were suggested, n =
65536, k = 65392, and t = 11. For the proposed parameters the complexity
of an attack was determined to be 285, using the decoding algorithm in [10].

We demonstrate how the results of this paper can be used to reduce
the complexity of an attack. We assume that the attacker has m randomly
generated messages, m1;m2; : : : ;mm. The attacker is successful if he can
forge a signature on one of the messages. Using the public hash function h,
m di�erent syndromes can be created, yi = h(mi), i = 1 : : :m. The decoding
algorithm in Section IV is applied and we search for a binary vector x of
weight t, such that yi = HxTi for some i. The complexity of the attack can
be estimated by the results in Section V. For example, choosing m = 244, an
attack would have complexity W = 276:5 bit operations. In conclusion, by
using the algorithm in Section IV the complexity of an attack can be slightly
reduced.

Correlation attacks on stream ciphers

In Section 3.2 it was shown that if a correlation between the keystream and
one of the LFSR's in the stream cipher is identi�ed, the cipher can be broken
by solving a decoding problem.

Let the length of the LFSR be l and let the set of possible LFSR sequences
be denoted by L. Clearly, jLj = 2l and for a �xed length n the set of all
truncated sequences from L is also a linear [n; l] block code [57], referred to
as C. Thus, the LFSR sequence u = u1; u2; : : : ; un is regarded as a codeword
from C and the keystream sequence z = z1; z2; : : : ; zn is regarded as the
received channel output. From the de�nition of the correlation between ui
and zi, we can describe each zi as the output from the binary symmetric
channel, BSC, when ui was transmitted. The correlation probability 1 � p,
de�ned by 1 � p = P (zi = ui), gives p as the crossover probability (error
probability) in the BSC. W.l.o.g we can assume p < 0:5.

130 10. The general decoding problem

The length n should be at least around n0 = l=(1� h(p)) for unique de-
coding, where h(p) is the binary entropy function. If n� n0 fast correlation
attacks are applicable, however, when n is close to n0 fast correlation attacks
fail since they require long sequences of received keystream symbols. When
n is close to n0 we can apply the algorithm in Figure 10.2 to recover the
initial state of the LFSR. To apply information set decoding in an attack on
stream ciphers is also considered in [14].

From the cyclic structure of C, all vectors of the form (ui; : : : ; un+i), i > 1,
are codewords in C. Hence, we can from the output sequence z1; z2; : : : form
many received words, namely (z1; : : : ; zn), (z2; : : : ; zn+1), and so on. Even
more words can be created by observing that x ! x2 maps into the same
code, i.e., (u0; u2; u4; u6; : : : ; u2n) is also a codeword in C. Finally, we add
suitable codewords to take each received vector in R to the desired form and
proceed as before.

10.7 Summary

A probabilistic decoding algorithm that uses a set of received words in order
to improve performance has been suggested. It has been shown that it can
be applied to most of the cryptographic applications that rely on the general
decoding problem. A signi�cant reduction of the computational complex-
ity compared with Stern's original algorithm and other algorithms has been
demonstrated, both theoretically and through simulations for codes of length
around 1000.

The results improve the attacks of di�erent cryptosystems based on the
general decoding problem. The improvements of the attacks restrict the
parameters of cryptosystems where the algorithms are applicable. For the
Stern identi�cation scheme with 215 users, the computational complexity of
265 corresponds to roughly 218 hours of work on a PC using our simulation
program as an estimate. Since the proposed decoding algorithms are paral-
lelizable, a joint software project with 10000 users would crack the scheme in
roughly a day. For the McEliece public key cryptosystem with 215 messages,
only a few minutes would be required for the same setting. This should
render the proposed parameters to be completely insecure. For the Stern
identi�cation scheme the results indicate that length 1024 would be suitable
for a secure system. Similarly, for the McEliece public key cryptosystem, we
would suggest length 2048 for a secure system.

11
Concluding Remarks

I
n this thesis, fast correlation attacks on stream ciphers have been studied.
After an introduction of correlation attacks and fast correlation attacks,

three algorithms for fast correlation attacks were proposed. The proposed
algorithms considers stream ciphers with linear feedback shift registers with
feedback polynomials having an arbitrary number of taps. The presented
results, indicate that it is possible to attack LFSRs with length approxi-
mately 100 in practise. From the theoretical results, we can also calculate
the complexity of an attack on longer LFSRs.

Recently, many other algorithms for fast correlation attacks have been
proposed. The performance of four of them are compared with the perfor-
mance of the algorithms proposed in this thesis. From the simulations we
concluded that the algorithm based on recovering a linear polynomial, is one
of the algorithms having best performance.

In future work it would be of interest to develop the algorithms for fast
correlation attacks further. In particular, the implementation issues of the
algorithms can be considered.

Although the precomputation only has to be performed once, it would
be of interest to reduce the complexity in the precomputation for practical
implementations. As an example, consider the attack on LILI-128 presented
in this thesis. The precomputation takes approximately a factor of 250 more
operations compared with the fast correlation attack.

In this thesis, the fast correlation attacks have mainly been presented in
a general model. It would be interesting to apply the algorithms to some
proposed stream ciphers.

131

132 Bibliography

Bibliography

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding
of linear codes for minimizing symbol error rate. IEEE Trans. on Inform.

Theory, IT-20:284�287, March 1974.

[2] E. R. Berlekamp, R. J. McEliece, and H.C.A. van Tilborg. On
the inherent intractability of certain coding problems. IEEE Trans. on

Inform. Theory, IT-24:384�386, July 1978.

[3] C. Berrou and A. Glavieux. Near optimum error-correcting coding
and decoding: Turbo codes. IEEE Trans. on Communications, COM-
44:1261�1271, Oct. 1996.

[4] C. Berrou, G. Glavieux, and P. Thitimashima. Near Shannon
limit coding and decoding: Turbo-codes. In Proceedings of ICC'93,
pages 1064�1070, Geneva, Switzerland, May 1993.

[5] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data
tradeo�s for stream ciphers. In Advances in Cryptology�

ASIACRYPT 2000, volume LNCS 1976, pages 1�13. Springer-Verlag,
2000.

[6] A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis
of A5/1 on a PC. In Fast Software Encryption 2000, volume LNCS 1978,
pages 1�18. Springer-Verlag, 2000.

[7] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic
primitives based on hard learning problems. In Advances in Cryptology�
CRYPTO'93, volume LNCS 547, pages 278�291. Springer-Verlag, 1993.

133

134 Bibliography

[8] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudoran-
dom number genrator. SIAM Journal on Computing, vol. 15:364�383,
1986.

[9] L. Brynielsson. Statistische Überlegungen zu einer methode von F.
Jönsson. personal communication.

[10] A. Canteaut and F. Chabaud. A new algorithm for �nding
minimum-weight words in a linear code: Application to McEliece cryp-
tosystem and to narrow-sense BCH codes of length 511. In IEEE Trans.

on Inform. Theory, volume IT-44, pages 367�378, 1998.

[11] A. Canteaut and M. Trabbia. Improved fast correlation at-
tacks using parity-check equations of weight 4 and 5. In Advances in

Cryptology�EUROCRYPT 2000, volume LNCS 1807, pages 573�588.
Springer-Verlag, 2000.

[12] F. Chabaud. On the security of some cryptosysytems based on error-
correcting codes. In Advances in Cryptology�EUROCRYPT'94, volume
LNCS 950, pages 176�185. Springer-Verlag, 1994.

[13] V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm
for fast correlation attacks on stream ciphers. In Fast Software Encryp-

tion 2000, volume LNCS 1978, pages 181�195. Springer-Verlag, 2000.

[14] V. Chepyzhov and B. Smeets. Performance of information set de-
coding in a correlation attack on certain stream ciphers. unpublished
report.

[15] V. Chepyzhov and B. Smeets. On a fast correlation attack on certain
stream ciphers. In Advances in Cryptology�EUROCRYPT'91, volume
LNCS 547, pages 176�185. Springer-Verlag, 1991.

[16] P. Chose, A. Joux, and M. Mitton. Fast correlation at-
tacks: An algorithmic point of view. In Advances in Cryptology�

EUROCRYPT 2002. To be published in LNCS, 2002.

[17] A. Clark, J. Golic, and E. Dawson. A comparison of fast correla-
tion attacks. In Fast Software Encryption'96, volume LNCS 1039, pages
145�158. Springer-Verlag, 1996.

[18] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of
stream ciphers with linear masking. Cryptology ePrint Archive, Report
2002/020, 2002. http://eprint.iacr.org/.

Bibliography 135

[19] D. Coppersmith, H. Krawczyk, and Y Mansour. The shrinking
generator. In Advances in Cryptology�CRYPTO'93, volume LNCS 547,
pages 22�39. Springer-Verlag, 1993.

[20] D. Coppersmith and P. Rogaway. Software-e�cient pseudorandom
function and the use thereof for encryption. U.S. Patent]5; 454; 039,
1995.

[21] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a
McEliece-based digital signature scheme. In Advances in Cryptology�

ASIACRYPT 2001, volume LNCS 2248, pages 157�174. Springer-Verlag,
2001.

[22] T. M. Cover and J. A. Thomas. Elements of Information Theory.
John Wiley and Sons, New York, 1991.

[23] E. Dawson, A. Clark, Goli¢ J., W. Millan, L. Penna, and

L. Simpson. The LILI-128 keystream generator. http://www.

cryptonessie.org/, 2000. Proceedings of �rst NESSIE Workshop.

[24] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Trans. on Inform. Theory, IT-22:644�654, 1976.

[25] P. Ekdahl and T. Johansson. SNOW�a new stream cipher. In
Proceedings of First Open NESSIE Workshop,KU-Leuven, 2000.

[26] P. Ekdahl and T. Johansson. Another attack on A5/1. In Proceed-

ings of 2001 IEEE Intern. Symposium on Inform. Theory, page 160,
2001.

[27] P. Ekdahl and T. Johansson. Distinguishing attacks on SOBER-t16
and t32. In Fast Software Encryption 2002, To be published in LNCS.

[28] M.P.C. Fossorier, M.J. Mihaljevi¢, and H. Imai. Critical noise for
convergence of iterative probabilistic decoding with belief propagation
in cryptographic applications. In Applied Algebra, Algebraic Algorithms

and Error Correcting Codes�AAECC 13, volume LNCS 1719, pages
282�293. Springer-Verlag, 1999.

[29] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cam-
bridge, Mass., 1963.

[30] R. G. Gallager. Information Theory and Reliable Communication.
John Wiley and Sons, New York, 1968.

[31] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium

on Theory of Computing, pages 25�32, 1989.

136 Bibliography

[32] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials
with queries: The highly noisy case. In 36th Annual Symposium on

Foundation of Computer Science, pages 294�303, 1995.

[33] J. Dj. Goli¢. On the security of nonlinear �lter generators. In Fast

Software Encryption'96, volume LNCS 1039, pages 173�188. Springer-
Verlag, 1996.

[34] J.Dj. Goli¢, M. Salmasizadeh, and E. Dawson. Fast correlation
attacks on the summation generator. Journal of Cryptology, Vol. 13:245�
262, 2000.

[35] S.W. Golomb. Shift Register Sequences. Holden-Day, San Fransisco,
1997.

[36] C.G. Günther. Alternating step generators controlled by de Bruijn
sequences. In Advances in Cryptology�EUROCRYPT'87, volume
LNCS 304, pages 91�103. Springer-Verlag, 1988.

[37] X. Guo-Zhen and J.L. Massey. A spectral characterization of
correlation-immune combining functions. IEEE Trans. on Inform. The-

ory, IT-34:569�571, 1988.

[38] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary
block and convolutional codes. IEEE Trans. on Inform. Theory, IT-
42:429�445, March 1996.

[39] T. Jakobsen. Higher-Order Cryptanalysis of Block Ciphers. Ph. D.
thesis, Technical University of Denmark, Denmark, 1999.

[40] R. Johannesson and K. Sh. Zigangirov. Fundamentals of Convo-
lutional Coding. IEEE Press, Piscataway, N.J., 1999.

[41] T. Johansson. Reduced complexity correlation attacks on two clock-
controlled generators. InAdvances in Cryptology�ASIACRYPT'98, vol-
ume LNCS 1514, pages 342�356. Springer-Verlag, 1998.

[42] T. Johansson and F. Jönsson. On the complexity of some crypto-
graphic problems based on the general decoding problem. In Proceedings
of 1998 IEEE Intern. Symposium on Inform. Theory, page 442, 1998.

[43] T. Johansson and F. Jönsson. Fast correlation attacks based on
turbo code techniques. In Advances in Cryptology�CRYPTO'99, pages
181�197. Springer-Verlag, 1999.

[44] T. Johansson and F. Jönsson. Improved fast correlation attacks on
stream ciphers via convolutional codes. In Advances in Cryptology�

EUROCRYPT'99, pages 347�362. Springer-Verlag, 1999.

Bibliography 137

[45] T. Johansson and F. Jönsson. Fast correlation attacks through
reconstruction of linear polynomials. In Advances in Cryptology�

CRYPTO 2000, pages 300�315. Springer-Verlag, 2000.

[46] T. Johansson and F. Jönsson. On the complexity of some crypto-
graphic problems based on the general decoding problem. IEEE Trans.

on Inform. Theory, to appear.

[47] F. Jönsson and T. Johansson. A fast correlation attack on LILI-128.
Information Processing Letters, vol. 81:127�132, 2002.

[48] D. Kahn. The Codebreakers: The story of Secret Writing. Macmillan
Publishing, New York, 1967.

[49] M. Kearns. E�cient noise-tolerant learning from statistical queries.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory

of Computing, pages 392�401, 1993.

[50] J. Kemeny and J. Snell. Finite Markov Chains. Springer-Verlag,
1960.

[51] A. Klapper and M. Goresky. 2-adic shift registers. In Fast Software
Encryption, Cambridge Security Workshop, volume LNCS 809, pages
174�178. Springer-Verlag, 1994.

[52] A. Klapper and M. Goresky. Feedback shift registers, combiners
with memory, and 2-adic span. Journal of Cryptology, Vol. 10:111�147,
1997.

[53] L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Ver-

doolaege. Analysis methods for (alleged) RC4. In Advances

in Cryptology�ASIACRYPT'98, volume LNCS 1514, pages 327�341.
Springer-Verlag, 1998.

[54] D.E. Knuth. The Art of Computer Programming � Seminumerical

Algorithms. Addison-Wesley, Massachusets, 2nd edition, 1981.

[55] P. J. Lee and E. F. Brickell. An observation on the security
of McEliece's public-key cryptosystem. In Advances in Cryptology�

EUROCRYPT'88, volume LNCS 330, pages 275�280. Springer-Verlag,
1988.

[56] J. S. Leon. A probabilistic algorithm for computing minimum weights
of large error-correcting codes. IEEE Trans. on Inform. Theory, IT-
34:1354�1359, September 1988.

138 Bibliography

[57] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-

Correcting Codes. North-Holland, Amsterdam, 1977.

[58] I. Mantin and A. Shamir. Practical attack on broadcast RC4. In
Fast Software Encryption 2001, To be published in LNCS.

[59] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.

on Inform. Theory, IT-15:122�127, January 1969.

[60] R. J. McEliece. A public-key cryptosystem based on algebraic coding
theory. DSN Progress Report 42�44, pages 114�116, 1978.

[61] W. Meier and O. Staffelbach. Fast correlation attacks on
stream ciphers. In Advances in Cryptology�EUROCRYPT'88, volume
LNCS 330, pages 301�314. Springer-Verlag, 1988.

[62] W. Meier and O. Staffelbach. Fast correlation attacks on certain
stream ciphers. Journal of Cryptology, Vol. 1:159�176, 1989.

[63] W. Meier and O. Staffelbach. Correlation properties of combiners
with memory in stream ciphers. Journal of Cryptology, Vol. 5:67�86,
1992.

[64] W. Meier and O. Staffelbach. The self-shrinking generator. In
Advances in Cryptology�EUROCRYPT'94, volume LNCS 950, pages
205�214. Springer-Verlag, 1994.

[65] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of

Applied Cryptography. CRC Press, Boca Raton, 1997.

[66] S. Micali and C.P. Schnorr. E�cient, perfect polynomial random
number generators. Journal of Cryptology, Vol. 3:157�172, 1991.

[67] M. Mihaljevic, M. Fossorier, and H. Imai. A low-complexity
and high-performance algorithm for the fast correlation attack. In Fast

Software Encryption 2000, volume LNCS 1978, pages 196�212. Springer-
Verlag, 2000.

[68] M. Mihaljevic, M. Fossorier, and H. Imai. An algorithm for crypt-
analysis of certain keystream generators suitable for high-speed software
and hardware implementations. IEICE Trans. Fundamentals, vol. E84-
A(no.1):311�318, January 2001.

[69] M. Mihaljevic, M. Fossorier, and H. Imai. On decoding tech-
niques for cryptanalysis of certain encryption algorithms. IEICE Trans.

Fundamentals, vol. E84-A(no.4):919�930, April 2001.

Bibliography 139

[70] M. Mihaljevic, M. Fossorier, and H. Imai. Fast correlation at-
tack algorithm with list decoding and an application. In Fast Software

Encryption 2001, To be published in LNCS.

[71] M. Mihaljevic and J. Goli¢. A fast iterative algorithm for a shift
register initial state reconstruction given the noisy output sequence.
In Advances in Cryptology�AUSCRYPT'90, volume LNCS 453, pages
165�175. Springer-Verlag, 1990.

[72] M. Mihaljevic and J. Dj. Golic. A method for convergence analysis
of iterative probabilistic decoding. IEEE Trans. on Inform. Theory,
vol. 46:2206�2211, 2000.

[73] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Probl. Controll and Information Theory, vol. 15:159�166, 1986.

[74] W. Penzhorn. Correlation attacks on stream ciphers: Computing
low weight parity checks based on error correcting codes. In Fast

Software Encryption'96, volume LNCS 1039, pages 159�172. Springer-
Verlag, 1996.

[75] J.G. Proakis. Digital Communications. McGraw-Hill, 3rd edition,
1995.

[76] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public key cryptosystems. Communications of the
ACM, vol. 21:120�126, 1978.

[77] G. Rose and P. Hawkes. The t-class of SOBER stream ciphers.
http://www.home.aone.net.au/qualcomm.

[78] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley and Sons, New York, 2nd edition, 1996.

[79] R. Schroeppel and A. Shamir. A T = O(2n=2), S = O(2n=4) algo-
rithm for certain NP-complete problems. SIAM Journal of Computing,
vol. 10:456�464, 1981.

[80] C. E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, Vol. 27:656�715, 1949.

[81] T. Siegenthaler. Correlation-immunity of nonlinear combining func-
tions for cryptographic applications. IEEE Trans. on Inform. Theory,
IT-30:776�780, 1984.

[82] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext
only. IEEE Trans. on Computers, C-34:81�85, 1985.

140 Bibliography

[83] Bluetooth SIG. Bluetooth speci�cation. www.bluetooth.com.

[84] L. Simpson. Divide and Conquer Attacks on Shift Register Based

Stream Ciphers. Ph.D. Thesis, Queensland University of Technology,
Australia, 1999.

[85] L. Simpson, E. Dawson, J. Golic, and M. Salmasizadeh. Fast
correlation attacks on the multiplexer generator. In Proceedings of 1998

IEEE Intern. Symposium on Inform. Theory, page 270, 1998.

[86] L. Simpson, E. Dawson, Goli¢ J., and W. Millan. LILI keystream
generator. In Proceedings of the Seventh AnnualWorkshop on Selected

Areas in Cryptology�SAC'2000, volume LNCS 2012, pages 248�261.
Springer-Verlag, 2000.

[87] S. Singh. The Code Book. Fourth Estate, London, 1999.

[88] J. Stern. A method for �nding codewords of small weight. In Coding

Theory and Applications, volume LNCS 388, pages 106�113. Springer-
Verlag, 1989.

[89] J. Stern. A new identi�cation scheme based on syndrome decoding. In
Advances in Cryptology�CRYPTO'93, volume LNCS 388, pages 13�21.
Springer-Verlag, 1994.

[90] D. R. Stinson. Cryptography: Theory and Practise. CRC Press, Boca
Raton, 1995.

[91] M. Sudan. Decoding of Reed Solomon codes beyond the error-
correction bound. Journal of Complexity, vol. 13(1):180�193, March
1997.

[92] A. Trofimov and K. Sh. Zigangirov. A posteriori probability de-
coding of convolutional codes. Problems of Information Transmission,
vol. 4:351�358, 1999.

[93] H. C. A. van Tilborg. Coding theory at work in cryptology and vice
versa. In Handbook of Coding Theory, volume vol. II, pages 1195�1227.
North-Holland, 1998.

[94] J. van Tilburg. Security-Analysis of a Class of Cryptosystems Based

on Linear Error-Correcting Codes. Ph.D. Thesis, Technical University
Eindhoven, The Netherlands, 1994.

[95] A. Vardy. The intractability of computing the minimum distance of a
code. IEEE Trans. on Inform. Theory, IT-43:1757�1766, 1997.

Bibliography 141

[96] P. Véron. Opérateur trace, Schémas D'identi�cation et Codes de

Goppa. Ph.D. Thesis, University de Toulon et du Var, France, 1995.

[97] K. Zeng, C. H. Yang, and T. R. N. Rao. On the linear consistency
test (LCT) in cryptanalysis. In Advances in Cryptology�CRYPTO'89,
volume LNCS 435, pages 164�174. Springer-Verlag, 1990.

[98] K. Zeng, C. H. Yang, and T. R. N. Rao. An improved linear
syndrome algorithm in cryptanalysis with applications. In Advances in

Cryptology�CRYPTO'90, volume LNCS 537, pages 34�47. Springer-
Verlag, 1991.

