
CEDAR: a Core-Extraction Distributed Ad hoc Routing algorithm

Prasun Sinha Raghupathy Sivakumar Vaduvur Bharghavan

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Email:fprasun, sivakumr, bharghavg@timely.crhc.uiuc.edu

Abstract

In this paper, we present CEDAR, a Core-Extraction Distributed Ad hoc Routing algorithm for
QoS routing in ad hoc network environments. CEDAR has three key components: (a) the estab-
lishment and maintenance of a self-organizing routing infrastructure called the core for performing
route computations, (b) the propagation of the link-state of stable high-bandwidth links in the core
through increase/decrease waves, and (c) a QoS route computation algorithm that is executed at
the core nodes using only locally available state.

Our performance evaluations show that CEDAR is a robust and adaptive QoS routing algorithm
that reacts quickly and e�ectively to the dynamics of the network while still approximating link-
state performance for stable networks.

1 Introduction

An ad hoc network is a dynamic multi-hop wireless network that is established by a group of mobile
hosts on a shared wireless channel by virtue of their proximity to each other. Since wireless trans-
missions are locally broadcast in the region of the transmitting host, hosts that are in close proximity
can hear each other and are said to be neighbors. The transitive closure of the neighborhood of all
the hosts in the set of mobile hosts under consideration forms an ad hoc network. Thus, each host is
potentially a router and it is possible to dynamically establish routes by chaining together a sequence
of neighboring hosts from a source to a destination in the ad hoc network. Such networks �nd ap-
plicability in military environments, wherein a platoon of soldiers or a
eet of ships may establish an
ad hoc network in the region of their deployment. Military network environments typically require
quality of service for their mission-critical applications. Hence, the focus of this paper is to provide
quality of service routing in ad hoc networks.

In particular, we seek to compute unicast routes that satisfy a minimum bandwidth requirement
from the source to the destination. Of course, since the network is highly dynamic, and transmissions
are susceptible to fades, interference, and collisions from hidden/exposed stations, we cannot provide
bandwidth guarantees for the computed routes. Rather, our goal is to provide routes that are highly
likely to satisfy the bandwidth requirement of a route [1].

Given the nature of the network and the requirements of the applications, the following are the
key goals of our routing algorithm. First, the algorithm must be highly robust, and should degrade
gracefully upon sudden link or host failures, or changes in the network topology. Second, the routing
algorithm must generate an admissible route (i.e. a route that satis�es the bandwidth requirement)
with high probability so long as such a route is available. Third, only some of the hosts in the network
should be involved in route computation because this involves monitoring and reacting to changes
in the network topology. However, every host should have quick access to routes when it seeks to
establish connections with other hosts. Fourth, the routing algorithm at the selected subset of hosts
which perform route computation must require only local computation and involve mostly local state.

1

Finally, each host must only maintain routes for those hosts that it cares about, i.e. those hosts with
whom it communicates, and must not have to update state often even if the network topology is highly
dynamic so long as the routes it cares about are stable.

In order to achieve the above goals, we propose a Core-Extraction Distributed Ad hoc Routing
(CEDAR) algorithm for QoS routing in ad hoc networks. CEDAR has three key components: (a) the
establishment and maintenance of the core of the network for performing the route computations, (b)
propagation and use of bandwidth and stability information of links in the ad hoc network, and (c)
the QoS route computation algorithm. Brie
y, CEDAR dynamically establishes a core of the network,
and then incrementally propagates link state of stable high bandwidth links to the nodes of the core.
Route computation is on-demand, and is performed by core hosts using local state only. We propose
CEDAR as a QoS routing algorithm for small to medium size ad hoc networks consisting of tens to
hundreds of nodes. The following is a brief description of the three key components of CEDAR.

� Core extraction: We dynamically extract the core of the network by approximating a minimum
dominating set of the ad hoc network using only local computation and local state. Each host
in the core then establishes a virtual link (via a tunnel) to nearby core hosts. Each core host
maintains the local topology of the hosts in its domain, and also performs route computation
on behalf of these hosts. The initial core computation and the core management upon change
in the network topology are purely local computations, thus the core adapts e�ciently to the
dynamics of the network.

� Link state propagation: QoS routing in CEDAR is achieved by propagating the bandwidth
availability information of stable links in the core graph. The basic idea is that the information
about stable high-bandwidth links can be made known to nodes far away in the network, while
information about dynamic links or low bandwidth links should remain local. The propagation of
link-state is achieved through slow-moving `increase' waves (which denote increase of bandwidth)
and fast-moving `decrease' waves (which denote decrease of bandwidth). The key questions to
answer in link state propagation are: when to initiate increase/decrease waves, how far can a
wave propagate, and how fast can a wave propagate.

� Route computation: Route computation �rst establishes a core path from the domain of the
source to the domain of the destination. This initial phase involves probing on the core graph,
and the resultant core path is cached for future use. The core path provides the directionality
of the route from the source to the destination. Using this directional information, CEDAR
iteratively tries to �nd a partial route from the source to the domain of the furthest possible
node in the core path (which then becomes the source for the next iteration) which can satisfy
the requested bandwidth, using only local information. E�ectively, the computed route is a
shortest-widest1 furthest path using the core path as the guideline.

Robustness, rather than optimality, is the primary concern of CEDAR. Core host computations
are purely local, and the algorithm to re-establish the core upon change in the network topology is also
local. Each core host knows only about nearby core hosts, and has no idea about the entire core graph.
Unlike the spine architecture [2, 3], there is no notion of a virtual backbone tree in the core graph. Core
paths are dynamically established for connection requests, and route computation is only performed
when a route is requested (unlike distance vector or link state algorithms). The only information that
is kept in a core host is the local topology, nearby core hosts, and information obtained about remote
links from increase/decrease waves. The nature of propagation of the increase/decrease waves ensures
that unstable links and low bandwidth links do not cause topology updates further away from their

1A shortest widest path is the maximum bandwidth path. If there are several such paths, it is the one with the least

number of hops.

2

locations. Thus, CEDAR adapts quickly to dynamics in the topology. At the same time, it computes
good routes and satis�es bandwidth requirements of connection requests with high probability so long
as such routes exist. Of course, CEDAR does not compute optimal routes because of the minimalist
approach to state management, but we believe that our trade-o� of robustness and adaptation for
optimality is well justi�ed in ad hoc networks.

The rest of this paper is organized as follows. Section 2 describes the network model, terminology,
and the goals of CEDAR. Section 3 describes the computation and dynamic management of the core
of the network. Section 4 describes the link state propagation through the core using increase and
decrease waves. Section 5 describes the route computation algorithm of CEDAR, and puts together
the algorithms described in the previous sections. Section 6 analyzes the performance of CEDAR
through simulations. Section 7 compares CEDAR to related work, and Section 8 concludes the paper.

2 Network Model and Goals

In this section, we �rst describe the network model, then the terminology used in this paper, and
�nally the goals of CEDAR.

2.1 Network Model

We assume that all the hosts communicate on the same shared wireless channel. For FHSS, this implies
that all hosts have the same frequency hopping pattern, while for DSSS, this implies that all hosts
have the same pseudorandom sequence. For an ad hoc network, this is a valid assumption [4]. We
assume that each transmitter has a �xed transmission range, and that neighborhood is a commutative
property (i.e. if A can hear B, then B can hear A). Because of the local nature of transmissions,
hidden and exposed stations2 abound in an ad hoc network. We assume the use of a CSMA/CA like
algorithm such as MACAW [5] or FAMA [6] for reliable unicast communication, and for solving the
problem of hidden/exposed stations. Essentially, data transmission is preceded by a control packet
hando�, and the sequence of packets exchanged in a communication is the following: RTS (from sender
to receiver) - CTS (from receiver to sender) - Data (from sender to receiver) - ACK (from receiver to
sender). The RTS and CTS packets avoid collisions from the exposed stations and the hidden stations
respectively. Local broadcasts are not guaranteed to be reliable (because it is unreasonable to expect
a CTS from every receiver before commencing data transmission), and are typically quite unreliable
due to the presence of hidden and exposed stations.

We assume small to medium networks ranging from tens to hundreds of hosts. For larger networks,
we propose a clustering algorithm in a related work [2] and apply CEDAR hierarchically within each
cluster, for a cluster of clusters, etc. We assume that mobility and extended fades are the main causes
of link failures and topology changes. We assume that the change in network topology is frequent, but
not frequent enough to render any sort of route computation useless. Note that we only care about the
relative mobility of the hosts, not the absolute mobility of the hosts. In particular, even if a platoon of
soldiers is moving, the ad hoc network would be considered to be stable so long as the neighborhood
of each soldier does not change.

We assume that the MAC/link layer can estimate the available link bandwidth. Because all the
hosts in a region share the same channel, each host must share the link bandwidth with the hosts in its
second neighborhood [5]. In related work on providing QoS in wireless channels, we have provided a
mechanism for each host to fairly access a shared channel, and claim at least B=N bandwidth, where B
is the e�ective channel bandwidth and N is the number of hosts locally contending for the bandwidth

2A hidden station is a host that is within the range of the receiver but not the transmitter, while an exposed station

is within the range of the transmitter but not the receiver.

3

[7]. While details of bandwidth sharing and estimation are beyond the scope of this paper, we assume
that each host can estimate the available bandwidth using some link-level mechanisms.

We assume a close coordination between the MAC layer and the routing layer. In particular, we
use the reception of RTS and CTS control messages at the MAC layer in order to improve the behavior
of the routing layer, as explained in Section 3.

Finally, bandwidth is the QoS parameter of interest in this paper. When an application requests
a connection, it speci�es the required bandwidth for the connection. The goal of CEDAR is then to
�nd a short stable route that can satisfy the bandwidth requirement of the connection.

2.2 Graph Terminology

We represent the ad hoc network by means of an undirected graph G = (V;E), where V is the set of
nodes in the graph (hosts in the network), and E is the set of edges in the graph (links in the network).
The ith open neighborhood, N i(x) of node x is the set of nodes whose distance from x is not greater
than i, except node x itself. The ith closed neighborhood N i[x] of node x is N(i) [fxg.

A dominating set S � V is a set such that every node in V is either in S or is a neighbor of a
node in S. A dominating set with minimum cardinality is called a minimum dominating set (MDS).
A virtual link [u; v] between two nodes in the dominating set S is a path in G from u to v. We use the
term tunnel interchangeably with virtual link in our discussions.

Given an MDS VC of graph G, we de�ne a core of the graph C = (VC ; EC), where EC = f[u; v] j
u 2 VC ; v 2 VC ; u 2 N

3(v)g. Thus, the core graph consists of the MDS nodes VC , and a set of virtual
links between every two nodes in VC that are within a distance 3 of each other in G. Two nodes u
and v which have a virtual link [u; v] in the core are said to be nearby nodes.

For a connected graph G, consider any dominating set S. If the diameter of G is greater than 2,
then for each node v 2 S, there must be at least one other node of S in N3(v) (otherwise there is at
least one node in G which is neither in S nor has a neighbor in S). From the de�nition of the core, if
G is connected, then a core C of G must also be connected (via virtual links).

2.3 Goals of CEDAR

Ad hoc routing typically has the following goals. (a) Route computation must be distributed, because
centralized routing in a dynamic network is impossible even for fairly small networks. (b) Route com-
putation should not involve the maintenance of global state, or even signi�cant amounts of volatile
non-local state. In particular, link state routing is not feasible because of the enormous state propa-
gation overhead when the network topology changes. (c) As few nodes as possible must be involved in
state propagation and route computation, since this involves monitoring and updating at least some
state in the network. On the other hand, every host must have quick access to routes on-demand. (d)
Each node must only care about the routes corresponding to its destination, and must not be involved
in frequent topology updates for parts of the network to which it has no tra�c. (e) Stale routes must
be either avoided or detected and eliminated quickly. (f) Broadcasts must be avoided as far as possible
because broadcasts are highly unreliable in ad hoc networks. (g) If the topology stabilizes, then routes
must converge to the optimal routes, and (h) It is desirable to have a backup route when the primary
route has become stale and is being recomputed.

QoS routing for ad hoc networks is relatively unchartered territory. We have the following goals
for QoS routing in ad hoc networks. (a) Applications provide a minimum bandwidth requirement for
a connection, and the routing algorithm must e�ciently compute a route that can satisfy the band-
width requirement with high probability. (b) If there exists a route that can satisfy the bandwidth
requirement, then the routing algorithm must compute an admissible route with high probability. (c)
The amount of state propagation and topology update information must be kept to a minimum. In

4

particular, every change in available bandwidth should not result in updated state propagation. (d)
Dynamic links (either unstable or low bandwidth links) must not cause state propagation throughout
the network. Only stable high bandwidth link information must be propagated throughout the net-
work. (e) As the network becomes stable, the routing algorithm should start providing near-optimal
routes, and (f) The QoS route computation algorithm should be simple and robust. Robustness, rather
than optimality, is the key requirement.

In summary, our goal is to compute good routes quickly, and react to the dynamics of the network
with only small amounts of state propagation.

3 CEDAR Architecture and the Core

The QoS routing architecture in CEDAR has three key components: (a) the establishment of the
core in the ad hoc network to manage topology information and perform route computation, (b) the
propagation of the link-state of stable high bandwidth links in the core graph through increase and
decrease waves, and (c) the route computation algorithm at core nodes using only local state. In this
section, we �rst describe the overall CEDAR architecture and then focus on the establishment and
maintenance of the core.

Brie
y, we extract the core of the ad hoc network by approximating the minimum dominating set
(MDS) of the ad hoc network. The nodes in the MDS comprise the core nodes of the network. Each
core node establishes a unicast virtual link (via a tunnel) with other core nodes a distance of 3 or
less away from it in the ad hoc network. The core nodes then collect local topology information, and
perform routing for the nodes in their domain (or immediate neighborhood). Each node that is not in
the core chooses a core neighbor as its dominator, i.e. the node which performs route computations
on its behalf. The core is merely an infrastructure for facilitating route computation, and is itself
independent of the routing algorithm. In particular, it is possible to use any of the well known ad hoc
routing algorithms such as DSR [8], LMR [9], TORA [10], DSDV [11], etc. in the core graph.

While it is possible to execute ad hoc routing algorithms using only local topology information
at the core nodes, CEDAR propagates the link-state corresponding to stable high-bandwidth links
among the core nodes. The motivation for this approach is that the link-state of dynamic and low-
bandwidth links should not be made known to core nodes far away (since the link-state is likely to
change frequently), but the link-state of stable high-bandwidth links can be used by remote core
nodes to compute better routes for connections passing through them. As we describe in Section
4, we propagate link-state via the use of two `waves': a slow moving increase wave that denotes an
increase in the available bandwidth of a link, and a fast moving decrease wave that denotes a decrease
in the available bandwidth of a link. For unstable links (which come up and go down frequently), the
decrease wave upon link failure will quickly overtake and kill the increase wave that corresponds to a
previous link establishment, thereby ensuring that the link state for unstable links remains within the
locality of the link. On the other hand, the increase wave of a stable link slowly propagates throughout
the core graph, thereby enabling remote core nodes to take advantage of this link. We constrain the
maximum distance to which the increase wave of a link can propagate depending on its available
bandwidth. Thus, only stable high-bandwidth links are made known to core nodes far away. While
the details of the link state propagation algorithm are deferred to Section 4, it is important to note
that the state available at a core node comprises the up-to-date local topology, and possibly outdated
information about stable high-bandwidth links far away. This is the state that is used by a core node
for route computation.

The route computation in CEDAR follows two steps. First, we establish a core path from the
dominator of the source node to the dominator of the destination node if such a path is not already
cached. The basic idea of establishing a core path is to provide the directionality from the source

5

to the destination. Once the core path is established, the dominator of the source node tries to �nd
the shortest admissible path to the domain of the furthest possible node in the core path using its
local state. The route computation is then iteratively carried out at the furthest reachable node in
the core path. Each core node only uses local state, and an admissible route is established in a single
pass (and carried in the route request packet). The link-state information that is obtained about
remote links using the increase/decrease waves is very useful in terms of both setting up shortest
admissible paths, as well as reducing the number of connection rejections. Note that for a stable ad
hoc network, CEDAR converges to an optimal link-state routing algorithm, where only the core nodes
are involved in route computation. While it is well known that link-state algorithms do not scale
well for dynamic networks, CEDAR provides an approximation of a link-state algorithm for stable
networks and provides a robust low overhead algorithm to adapt to the dynamics of the network
while still computing good routes with low overhead for small to medium size networks. For large
networks, our ongoing work proposes a hierarchical clustering of the network and the application of
CEDAR at each level of the hierarchy. Finally, CEDAR also provides for e�ective route recomputation
mechanisms for route changes in ongoing connections, as described in Section 5.

In the following subsections, we �rst describe the motivation for choosing a core-based routing
architecture, then describe a low overhead mechanism to generate and maintain the core of the network,
and �nally describe an e�cient mechanism to accomplish a `core broadcast' using unicast transmissions.
The core broadcast is used both for propagation of increase/decrease waves, and for the establishment
of the core path in the route computation phase.

3.1 Rationale for a Core-based Architecture in CEDAR

Many contemporary proposals for ad hoc networking require every node in the ad hoc network to
perform route computations and topology management [8, 9, 11, 12]. However, CEDAR uses a core-
based infrastructure for QoS routing due to two compelling reasons.

1. QoS route computation involves maintaining local and some non-local link-state, and monitoring
and reacting to some topology changes. Clearly, it is bene�cial to have as few nodes in the
network performing state management and route computation as possible.

2. Local broadcasts are highly unreliable in ad hoc networks due to the abundance of hidden
and exposed stations. Topology information propagation [11, 12] and route probes [8, 9] are
inevitable in order to establish routes and will, of necessity, need to be broadcast if every node
performs route computation. While the adverse e�ects of unreliable broadcasts are typically not
considered in most of the related work on ad hoc routing, we have observed that
ooding in
ad hoc networks is highly lossy [13]. On the other hand, if only a core subset of nodes in the
ad hoc network perform route computations, it is possible to set up reliable unicast channels
between nearby core nodes and accomplish both the topology updates and route probes much
more e�ectively.

The issues with having only a core subset of nodes performing route computations are threefold. First,
nodes in the ad hoc network that do not perform route computation must have easy access to a nearby
core node so that they can quickly request routes to be setup. Second, the establishment of the core
must be a purely local computation. In particular, no core node must need to know the topology of
the entire core graph. Third, a change in the network topology may cause a recomputation of the core
graph. Recomputation of the core graph must only occur in the locality of the topology change, and
must not involve a global recomputation of the core graph. On the other hand, the locally recomputed
core graph must still only comprise of a small number of core nodes - otherwise the bene�t of restricting
route computation to a small core graph is lost.

6

We have previously developed the spine architecture for ad hoc routing, in which we establish a
tree among the nodes of an approximate minimum connected dominating set of the ad hoc network
[2]. While the spine architecture provides some of the bene�ts of the core architecture, it does not
handle the last two issues mentioned above. In particular, the spine computation is a global algorithm,
each spine node is required to know the entire spine topology, and disconnection of the spine due to
topology changes can result in a global recomputation in the worst case. Unlike the spine architecture,
the core architecture requires purely local computations and local state to generate and maintain the
core, each core node only has local information about the core, and there is no explicit tree structure
that is established in the core. We believe that the core provides the bene�ts of the spine architecture
without incurring the high maintenance overhead.

3.2 Generation and Maintenance of the Core in CEDAR

Ideally, the core comprises of the nodes in a minimum dominating set VC of the ad hoc network
G = (V;E). However, �nding the MDS is a NP-hard problem that is also hard to approximate [14].
The best known distributed algorithm for MDS approximation is a greedy algorithm that requiresO(D)
steps and has a competitive ratio of log(jV j), where D is the diameter of the network. However, this
algorithm requires global computation (i.e. the result of step i at node u can a�ect the computation of
step i+1 at node v). While we can use the greedy algorithm to generate the best known approximation
for the MDS, we have chosen to use a robust and simple constant time algorithm which requires only
local computations and generates good approximations for the MDS in the average case.

Consider a node u, with �rst open neighborhoodN1(u), degree d(u) = jN1(u)j, dominator dom(u),
and e�ective degree d�(u), where d�(u) is the number of its neighbors who have chosen u as their
dominator. The core computation algorithm which is performed periodically, works as follows at node
u.

1. u broadcasts a beacon which contains the following information pertaining to the core compu-
tation: < u; d�(u); d(u); dom(u) >.

2. It sets dom(u) v, where v is the node in N1[u] with the largest value for < d�(v); d(v) >, in
lexicographic order. Note that u may choose itself as the dominator.

3. u then sends v a unicast message including the following information: < u; f(w; dom(w)) j 8w 2
N1(u)g >. v then increments d�(v).

4. If d�(u) > 0, then u joins the core.

Essentially, each node that needs to �nd a dominator selects the highest degree node with the maximum
e�ective degree in its �rst closed neighborhood. Ties are broken by node id.

When a node u joins the core, it issues a `piggybacked broadcast' in N3(u). A piggybacked broad-
cast is accomplished as follows. In its beacon, u transmits a message: < u;DOM; 3; path traversed =
null >. When node w hears a beacon that contains a message < u;DOM; i; path traversed >, it
piggybacks the message < u;DOM; i� 1; path traversed+w > in its own beacon if i� 1 > 0. Thus,
the piggybacked broadcast of a core node advertises its presence in its third neighborhood. As shown
in Section 2, this guarantees that each core node identi�es its nearby core nodes, and can set up
virtual links to these nodes using the path traversed �eld in the broadcast messages. The state that
is contained in a core node u is the following: its nearby core nodes (i.e. the core nodes in N3(u));
N�(u), the nodes that it dominates; for each node v 2 N�(u), < 8w 2 N1(v); < w; dom(w) >>. Thus
each core node has enough local topology information to reach the domain of its nearby nodes and set
up virtual links. However, no core node has knowledge of the core graph. In particular, no non-local
state needs to be maintained by core nodes for the construction or maintenance of the core. Note from

7

steps 2 and 4 that over a period of time, the core graph prunes itself because nodes have a propensity
to choose their core neighbor with the highest e�ective degree as their dominator.

Maintaining the core in the presence of network dynamics is very simple. Consider that due to
mobility, a node loses connectivity with its dominator. After listening to beacons from its neighbors,
the node either �nds a core neighbor which it now nominates as its dominator, or nominates one of
its neighbors to join the core, or itself joins the core.

3.3 Core Broadcast and its Application to CEDAR

As with most existing ad hoc networks, CEDAR requires the broadcast of route probes to discover
the location of a destination node, and the broadcast of some topology information (in the form of
increase/decrease waves). While most current algorithms assume that
ooding in ad hoc networks
works reasonably well, our experience has shown otherwise [13]. In particular, we have observed that

ooding probes, which causes repeated local broadcasts, is highly unreliable because of the abundance
of hidden and exposed stations. Thus, we provide a unicast based mechanism for achieving a `core
broadcast'. Note that it is reasonable to assume a unicast based mechanism to achieve broadcast in the
core, because each core node is expected to have few nearby core nodes. Besides, our core broadcast
mechanism ensures that each core node does not transmit a broadcast packet to every nearby core
node. CEDAR uses a close coordination between the medium access layer and the routing layer in
order to achieve e�cient core broadcast.

Recall that a virtual link is a unicast path of length 1, 2, or 3. Recall also, that CSMA/CA protocols
use a RTS-CTS-Data-ACK handshake sequence to achieve reliable unicast packet transmission. Our
goal is to use the MAC state in order to achieve e�cient core broadcast using O(jV j) messages, where
jV j is the number of nodes in the network.

In order to achieve e�cient core broadcast, we assume that each node temporarily caches every
RTS and CTS packet that it hears on the channel for core broadcast packets only. Each core broadcast
message M that is transmitted to a core node i has the unique tag < M; i >. This tag is put in the
RTS and CTS packets of the core broadcast packet, and is cached for a short period of time by any
node that receives (or overhears) these packets on the channel. Consider that a core node u has heard
a CTS(< M; v >) on the channel. Then, it estimates that its nearby node v has received M , and
does not forward M to node v. Now suppose that u and v are a distance 2 apart, and the virtual
channel [u; v] passes through a node w. Since w is a neighbor of v, w hears CTS(< M; v >). Thus,
when u sends a RTS(< M; v >) to w, w sends back a NACK back to u. If u and v are a distance
3 apart, using the same argument we will have atmost one extra message. Essentially, the idea is to
monitor the RTS and CTS packets in the channel in order to discover when the intended receiver of a
core broadcast packet has already received the packet from another node, and suppress the duplicate
transmission of this packet.

In the ad hoc network shown in Figure 1, when node 1 is the source of the core broadcast, 10
would not be sending a message to 11 as it would have heard a CTS from 11, when 11 was receiving
the message from 3. Similarly, 8 would not be sending on the tunnel to 10, as 9 would have heard the
CTS from 10, and hence, would send a NACK when 8 sends an RTS to 9. Also, on the tunnel from
6 to 3, the message would be sent to 5, but 5 would not be able to forward it any further because of
4 having heard CTS from 3, and hence, 5 receiving NACK from 4. Thus, the example illustrates that
a duplicate message can be avoided on tunnels of length 1 and 2, but a duplicate message will travel
one extra hop for tunnels of length 3.

Note that our core broadcast has the following features:

1. The core nodes do not explicitly maintain a source-based tree. However, the core broadcast
dynamically (and implicitly) establishes a source-based tree, which is typically a breadth-�rst
search tree for the source of the core broadcast.

8

1 11 6 10

8

3

2

1

3

4

5

6

7 8

9

10

11

Core broadcast with node
3 as source

Ad hoc Network Topology

1

3 6

10 8

1 as source
Core broadcast with node

11

Figure 1: Example of a core broadcast. Nodes in black are core nodes. Solid lines denote links in the
ad hoc network. Dotted pipes denote virtual links in the core graph.

2. The number of messages is O(jV j) in the worst case, and O(jVC j) in the average case. In
particular, the only case we transmit extra messages is when two nearby core nodes are a distance
3 apart.

3. Since the trees are not explicitly maintained, di�erent messages may establish di�erent trees.
Likewise, changes in the network topology do not require any recomputation. However, the
coordination of the MAC layer and the routing layer ensures that the core broadcast establishes
a tree, and that a core node typically does not receive duplicates for a core broadcast.

While our approach for the core broadcast is very low overhead and adapts easily to topology changes,
the RTS and CTS packets corresponding to a core broadcast need to be cached for some time after
their reception.

Core broadcast �nds applicability in two key aspects of CEDAR: discovery of the core path, and
propagation of increase/decrease waves. The discovery of the core path is broadcast because the sender
may not know the location of the receiver. It initiates a core broadcast to �nd the location of the
receiver, and simultaneously, discover the core path.

4 QoS State Propagation in CEDAR

Section 3 described the core routing infrastructure of CEDAR. Since each core node uses only the
locally cached state to compute the shortest-widest furthest path along the core path in the route
computation phase, we now turn our attention to the nature of state that is stored in each core node.
At one extreme is the minimalist approach of only storing local topology information at each core node.
This approach results in a poor routing algorithm (i.e. the routing algorithm may fail to compute
an admissible route even if such routes exist in the ad hoc network) but has a very low overhead for
dynamic networks. At the other extreme is the maximalist approach of storing the entire link state
of the ad hoc network at each core node. This approach computes optimal routes but incurs a high
state management overhead for dynamic networks, and potentially computes stale routes based on
out-of-date cached state when the network dynamics is high.

The problem with having only local state is that core nodes are unable to compute good routes
in the absence of link-state information about stable high-bandwidth remote links, while the problem
of having global state is that it is useless to maintain the link state corresponding to low-bandwidth
and highly dynamic links that are far away because the cached state is likely to be stale anyway.
Fundamentally, each core node needs to have the up-to-date state about its local topology, and also
the link-state corresponding to relatively stable high-bandwidth links further away. Providing for
such a link-state propagation mechanism ensures that CEDAR approaches the minimalist local state

9

algorithm in highly dynamic networks, and approaches the maximalist link-state algorithm in highly
stable networks. We achieve the goal of having stability and bandwidth based link-state propagation
using increase and decrease waves, as described in this section.

The basic idea of having our increase/decrease wave approach for updating link-state is the follow-
ing. There are two types of waves: a slow-moving increase wave that denotes an increase of bandwidth
on a link, and a fast-moving decrease wave that denotes a decrease of bandwidth on a link. For unsta-
ble links that come up and go down frequently, the fast moving decrease wave quickly overtakes and
kills the slower moving increase wave, thus ensuring that the link-state corresponding to dynamic links
is local. For stable links, the increase wave gradually propagates through the core. Each increase wave
also has a maximum distance it is allowed to propagate. Low bandwidth increase waves are allowed
only to travel a short distance, while high bandwidth increase waves are allowed to travel far into the
network. Essentially, the goal is to propagate only stable high-bandwidth link-state throughout the
core, and keep the low-bandwidth and unstable link-state local.

We �rst describe the mechanics of the increase and decrease waves, and then answer the three
key questions pertaining to these waves: when should a wave be generated, how fast should a wave
propagate, and how far should a wave propagate.

4.1 Increase and Decrease Waves

For every link l = (a; b), the nodes a and b are responsible for monitoring the available bandwidth
on l, and for notifying the respective dominators for initiating the increase and decrease waves, when
the bandwidth changes by some threshold value. These waves are then propagated by the dominators
(core nodes) to all other core nodes via core broadcasts. Each core node has two queues: the ito-queue
that contains the pending core broadcast messages for increase waves, and the dto-queue that contains
the pending core broadcast messages for decrease waves. For each link l about which a core node
caches link-state, the core node contains the cached available bandwidth bav(l).

The following is the sequence of actions for an increase wave.

1. When a new link l = (a; b) comes up, or when the available bandwidth b(a; b) increases beyond
a threshold value, then the two end-points of l inform their dominators for initiating a core
broadcast for an increase wave: ito(< a; b; dom(a); dom(b); b(a; b); ttl(b) >)
where ito (increase to) denotes the type of the wave, (a; b) identi�es the link, dom(a) denotes the
dominator of a, dom(b) denotes the dominator of b, b(a; b) denotes the available bandwidth on
the link, and ttl(b) is a `time-to-live' �eld that denotes the maximum distance to which this wave
can be propagated as an increase wave. The ids of the dominators of the link end-points are
required by the routing algorithm. ttl(b) is an increasing function of the available bandwidth, as
described in Section 4.3.

2. When a core node u receives an ito wave ito(< a; b; dom(a); dom(b); b(a; b); ttl >),

(a) if u has no state cached for (a; b),
bav(a; b) b(a; b)
if (ttl > 0), then add ito(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the ito-queue.

(b) else if u has cached state for (a; b) and (ttl > 0),

i. if (bav(a; b) < b(a; b))
bav(a; b) b(a; b)
delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add ito(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the ito-queue.

ii. else if (bav(a; b) > b(a; b)),
bav(a; b) b(a; b)

10

delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add dto(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the dto-queue.

(c) else if u has cached state for (a; b) and (ttl = 0),
bav(a; b) b(a; b)
delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add dto(< a; b; dom(a); dom(b); 0;1 >) to the dto-queue.

3. The ito-queue is
ushed periodically, depending on the speed of propagation of the increase wave.

The following is the sequence of actions for a decrease wave.

1. When a link l = (a; b) goes down, or when the available bandwidth b(a; b) decreases beyond
a threshold value, then the two end-points of l inform their dominators for initiating a core
broadcast for a decrease wave: dto(< a; b; dom(a); dom(b); b(a; b); ttl(b) >), where dto (decrease
to) denotes the type of the wave, and the other parameters are as de�ned before.

2. When a core node u receives a dto wave dto(< a; b; dom(a); dom(b); b(a; b); ttl >),

(a) if u has no state cached for (a; b) and (b(a; b) = 0),
the wave is killed.

(b) else if u has no state cached for (a; b) and (b(a; b) > 0),
bav(a; b) b(a; b)

if (ttl > 0), then add ito(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the ito-queue.

(c) else if u has cached state for (a; b) and (ttl > 0),

i. if (bav(a; b) < b(a; b)),
bav(a; b) b(a; b)
delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add ito(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the ito-queue.

ii. else if (bav(a; b) > b(a; b)),
bav(a; b) b(a; b)
delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add dto(< a; b; dom(a); dom(b); b(a; b); ttl � 1 >) to the dto-queue.

(d) else if u has cached state for (a; b) and (ttl = 0),
bav(a; b) b(a; b)
delete any pending ito/dto message for (a; b) from the ito-queue and dto-queue.
add dto(< a; b; dom(a); dom(b); 0;1 >) to the dto-queue.

3. The dto-queue is
ushed whenever there are packets in the queue.

There are several interesting points in the above algorithm. First, the way that the ito-queue and
the dto-queue are
ushed ensures that the decrease waves propagate much faster than the increase
waves and suppress state propagation for unstable links. Second, waves are converted between ito and
dto on-the-
y, depending on whether the cached value for the available bandwidth is lesser than the
new update (ito wave generated) or not (dto wave generated). Third, after a distance of ttl (which
depends on the current available bandwidth of the link), the dto(< a; b; dom(a); dom(b); 0;1 >)
message ensures that all other core nodes which had state cached for this link now destroy that state.
However, the dto(< a; b; dom(a); dom(b); 0;1 >) wave does not propagate throughout the network -
it is suppressed as soon as it hits the core nodes which do not have link state for (a; b) cached (point
2(a) in decrease wave propagation). As we have noted before, the increase/decrease waves use the
e�cient core broadcast mechanism for propagation.

11

Essentially, the above algorithm ensures that the link-state information for stable high-bandwidth
links gets propagated throughout the core, while the link-state information for unstable and low-
bandwidth links remains local - which is the goal of the CEDAR state propagation algorithm.

We now answer the three key questions pertaining to the propagation of increase/decrease waves:
when should a wave be generated, how fast should a wave propagate, and how far should a wave
propagate.

4.2 When should a Increase/Decrease Wave be Generated?

Clearly, a wave should not be generated for every incremental change in the available bandwidth of
the link. In CEDAR, we only generate a wave when the bandwidth has changed by a threshold value
since the last wave was generated. The setting of the threshold parameter is the focus of the discussion
in this section.

A simple approach would be to make the threshold a constant system parameter. In other words,
a wave is generated when the bandwidth change since the last generation of the wave has exceeded
a �xed value, say 10% of the raw channel bandwidth. While this approach works well when the
available bandwidth has the same order of magnitude as a typical connection request (e.g. a channel
capacity of 10Mbps and connection requests in the range of 1Mbps), it is very wasteful (in terms
of the number of waves generated) if the channel capacity is orders of magnitude higher than the
typical connection request (e.g. a channel capacity of 10Mbps and connection requests in the range of
20Kbps). In the latter case, we propose a logarithmic scale for the threshold, similar to the algorithm
by [15]. This approach is motivated by the following argument: if the available bandwidth is 5Mbps
and the typical request is 20Kbps, then an increase of the channel bandwidth to 5.02Mbps or a
decrease of the channel bandwidth to 4.98Mbps is not signi�cant. However, if the available channel
bandwidth is 40Kbps, and the typical request is 20Kbps, then an increase to 60Kbps or a decrease to
20Kbps is a signi�cant change. The advantage of the logarithmic update is that it does not wastefully
generate increase/decrease waves when the change in link capacity is unlikely to alter the probability
of computing admissible routes.

In the CEDAR simulations, we currently use the constant threshold approach for simplicity. Future
work will migrate to the logarithmic scale for the threshold.

4.3 How Far does a Increase/Decrease Wave Propagate?

Our goal is to propagate information about stable high-bandwidth links throughout the network and
localize the state of the low-bandwidth links. This is because every core node that caches information
corresponding to a link can potentially use the bandwidth of the link, and the contention for a link
is dependent on the number of core nodes caching the state of the link. For low-bandwidth links, it
makes sense to have as few nodes as possible contending for the link, while for stable high-bandwidth
links, it makes sense to have as many core nodes as possible know about the link in order to compute
good routes. In order words, the maximum distance that the link state can travel (i.e. the time-to-live
�eld) is an increasing function of the available bandwidth of the link.

Our current CEDAR simulation uses a linear function for computing the ttl. However, we have
used a
uid model analysis of an ad hoc network, and determined that in general, the ttl should be
a function of b1=k, where k is a small number ranging from 1 to 3 depending on the density of the

uid generated from a source to its neighbors. The details of this analysis are ongoing work and not
presented for lack of space. However, the summary of our results indicates that the selection of k = 1
(i.e. the constant function) works well for the environments under consideration.

12

4.4 How Fast does a Increase/Decrease Wave Propagate?

An increase wave waits for a �xed timeout period (which is a system parameter that should be
approximately twice the expected interarrival time between the generation of two successive waves
for any link in the network) at each node before being forwarded to its neighbors (using the core
broadcast). Thus, increase waves propagate slowly. A decrease wave is immediately forwarded to its
neighbors (using the core broadcast). Thus decrease waves move much faster and can kill increase
waves for unstable links.

An added bene�t of waiting at each node for a timeout period before forwarding the wave is that
it naturally leads to the implicit establishment of a source-based breadth-�rst-search tree for the core
broadcast described in Section 3.

5 QoS Routing in CEDAR

In the previous two Sections, we have described the core infrastructure (i.e. which nodes in the ad
hoc network perform route computation and how they communicate among themselves) and the state
propagation algorithm (i.e. what state does each core node contain). In this section, we complete the
description of CEDAR by specifying how the core nodes use the state information to compute QoS
routes.

The QoS route computation in CEDAR consists of three key components: (a) discovery of the
location of the destination and establishment of the core path to the destination, (b) establishment
of a short stable admissible QoS route from the source to the destination using the core path as a
directional guideline, and (c) dynamic re-establishment of routes for ongoing connections upon link
failures and topology changes in the ad hoc network.

Brie
y, QoS route computation in CEDAR is an on-demand routing algorithm which proceeds
as follows: when a source node s seeks to establish a connection to a destination node d, s provides
its dominator node dom(s) with a < s; d; b > triple, where b is the required bandwidth for the
connection. If dom(s) can compute an admissible available route to d using its local state, it responds
to s immediately. Otherwise, if dom(s) already has the dominator of d cached and has a core path
established to dom(d), it proceeds with the QoS route establishment phase. If dom(s) does not know
the location of d, if �rst discovers dom(d), simultaneously establishes a core path to d, and then
initiates the route computation phase. A core path from s to d results in a path in the core graph
from dom(s) to dom(d). dom(s) then tries to �nd the shortest-widest furthest admissible path along
the core path, i.e. dom(s) uses its local state to �nd the shortest-widest admissible path to a node t
in the domain of the furthest possible core node dom(t) in the core path. Once the path from s to
t is established, dom(t) then uses its local state to �nd the shortest-widest furthest admissible path
to d along the core path, and so on. Eventually, either an admissible route to d is established, or
the algorithm reports a failure to �nd an admissible path. As we have already discussed in previous
sections, the knowledge of remote stable high-bandwidth links at each core node signi�cantly improves
the probability of �nding an admissible path so long as such a path exists in the network.

In the following subsections, we describe the three key components of QoS routing in CEDAR.

5.1 Establishment of the Core Path

The establishment of a core path takes place when s requests dom(s) to set up a route to d, and
dom(s) does not know the identity of dom(d) or does not have a core path to dom(d). Establishment
of a core path consists of the following steps.

1. dom(s) initiates a core broadcast to set up a core path with the following message:
< core path req; dom(s); d; b; P = null >.

13

2. When a core node u receives the core path request message < core path req; dom(s); d; b; P >,
it sets P P [fug, and forwards the message to each of its nearby core nodes (according to
the core broadcast algorithm) to whose domain there exists atleast one path (from u's domain)
satisfying bandwidth b.

3. When dom(t) receives the core path request message < core path req; dom(s); d; b; P >, it sends
back a source rooted unicast core path ack message to dom(s) along the inverse path recorded
in P . The response message also contains P , the core path from dom(s) to dom(d).

Upon reception of the core path ack message from dom(d), dom(s) completes the core path establish-
ment phase and enters the QoS route computation phase.

Note that by virtue of the core broadcast algorithm, the core path request traverses an implicitly
(and dynamically) established source routed tree from dom(s) which is typically a breadth-�rst search
tree. Thus, the core path is approximately the shortest admissible path in the core graph from dom(s)
to dom(d), and hence provides a good directional guideline for the QoS route computation phase.

5.2 QoS Route Computation

After the core path establishment, dom(s) knows dom(d) and the core path from dom(s) to dom(d).
Recall from Section 3 that dom(s) has the local topology - which includes all the nodes in its domain,
and for each dominated node u, the bandwidth of each link incident on u, the adjacency list of
u and the dominator of each of the neighbors of u. Recall from Section 4 that dom(s) has the
information gathered about remote links through increase/decrease waves, and for each such link
(u; v), the bandwidth of (u; v), dom(u), and dom(v). dom(s) thus has a partial knowledge of the ad
hoc network topology, which consists of the up-to-date local topology, and some possibly out-of-date
information about remote stable high-bandwidth links in the network. The following is the sequence
of events in QoS route computation.

1. Using the local topology, dom(s) tries to �nd a path from s to the domain of the furthest possible
core node in the core path (say dom(t)) that can provide at least a bandwidth of b (bandwidth
of the connection request). The bandwidth that can be provided on a path is the minimum of
the individual available link bandwidths that comprise the path.

2. Among all the admissible paths (known using local state) to the domain of the furthest possible
core node in the core path, dom(s) picks the shortest-widest path using a two phase Dijkstra's
algorithm [16].

3. Let t be the end point of the chosen path and p(s; t) denote the path. dom(s) sends dom(t) the
following message: < s; d; b; P; p(s; t); dom(s); t >, where s, d, and t are the source, destination,
and intermediate node in the partially computed path, b is the required bandwidth, P is the
core path, and p(s; t) is the partial path.

4. dom(t) then performs the QoS route computation using its local state identical to the computa-
tion described above.

5. Eventually, either there is an admissible path to d or the local route computation will fail to
produce a path at some core node. The concatenation of the partial paths computed by the core
nodes provides an end-to-end path that can satisfy the bandwidth requirement of the connection
with high probability.

The core path is computed in one round trip, and the QoS route computation algorithm also takes
one round trip. Thus, the route discovery and computation algorithms together take two round trips
if the core path is not cached and one round trip otherwise.

14

Note that while the QoS route is being computed, packets may be sent from s to d using the core
path. The core path thus provides a simple backup route while the primary route is being computed.

5.3 Dynamic QoS Route Recomputation for Ongoing Connections

Route recomputations may be required for ongoing connections under two circumstances: the end host
moves, and there is some intermediate link failure (possibly caused by the mobility of an intermediate
router). End host mobility can be thought of as a special case of link failure, wherein the last link
fails.

CEDAR has two mechanisms to deal with link failures and reduce the impact of failures on ongoing

ows: dynamic recomputation of an admissible route from the point of failure, and noti�cation back
to the source for source-initiated route recomputation. These two mechanisms work in concert and
enable us to provide seamless mobility.

1. QoS Route Recomputation at the Failure Point: Consider that a link (u; v) fails on the path of
an ongoing connection from s to t. The node nearest to the sender, u, then initiates a local
route recomputation similar to the algorithm in Section 5.2. Once the route is recomputed, u
updates the source route in all packets from s to t accordingly. If the link failure happens near
the destination, then dynamic route recomputation at the intermediate node works very well
because the route recomputation time to the destination is expected to be small, and packets
in-
ight are re-routed seamlessly.

2. QoS Route Recomputation at the Source: Consider that a link (u; v) fails on the path of an ongo-
ing connection from s to t. The node nearest to the sender, u, then noti�es s that the link (u; v)
has failed. Upon receiving the noti�cation, u stops its packet transmission, initiates a QoS route
computation as in Section 5.2, and resumes transmission upon the successful re-establishment
of an admissible route. If the link failure happens near the source, then source-initiated re-
computation is e�ective, because the source can quickly receive the link-failure noti�cation and
temporarily stop transmission.

The combination of these two mechanisms is e�ective in supporting seamless communication inspite
of mobility and dynamic topology changes. Basically, we use source-initiated recomputation as the
long-term solution to handling link failure, while the short-term solution to handle packets in-
ight
is through the dynamic recomputation of routes from the intermediate nodes. Recomputation at the
failure point is not really e�ective if the failure happens close to the source, but in this case, the
number of packets in
ight from s to u is small.

6 Performance Evaluation

We have evaluated the performance of CEDAR via both implementation and simulation. Our im-
plementation consists of a small ad hoc network consisting of six mobile nodes that use a Photonics
(Data Technology) 1Mbps Infrared network. We have customized the Linux 2.0.31 kernel to build
our ad hoc network environment (written partly in user mode and partly in kernel mode). While the
testbed shows a proof of concept and has exposed some of the practical di�culties in implementing
CEDAR, our detailed performance evaluation has been using a simulator that faithfully implements
the CEDAR algorithms.

For our simulations, we make the following assumptions about the network environment. (a) The
channel capacity is 1Mbps. (b) It takes � time for a node to successfully transmit a message over a
single link, where � is the degree of the node. (c) The dynamics of the topology are induced either
by link failure or mobility. (d) Packets are source routed. (e) The transmission range for each node

15

is a 10 by 10 unit square region with the node at the center of this region (we generate our test
graphs by randomly placing hosts in a 100 by 100 square region) and (vi) each CEDAR control packet
transmission slot has a period of 2ms.

We present three sets of results from our simulations. The �rst set of results characterizes the
performance of CEDAR in a best-e�ort service environment. The goal is to isolate the characterization
of the basic routing algorithm from the e�ects of QoS routing for this set of results. The second set
of results evaluates the performance of QoS routing in CEDAR. The third set of results evaluates the
performance of CEDAR for ongoing connections in the presence of mobility. Essentially, the �rst two
sets of results evaluate the performance of CEDAR in coming up with new routes in an ad hoc network,
while the third set of results evaluates how CEDAR copes with link failures for ongoing connections.

In the �rst set of results, presented in Tables 1-2, we compare CEDAR to an optimal shortest path
routing algorithm in a best-e�ort service environment. Our performance measures are the following:
(i) average path length (APL), (ii) message complexity for route computation (MC) and (iii) time
complexity for route computation (TC). In addition we present the core usage (CU) which is the
average number of virtual links used in a route. Note that for the best e�ort environment, we do not
have a concept of QoS for connections, and the increase/decrease waves essentially carry only link
up/down information.

In the second set of results, presented in Tables 3-6, we evaluate the QoS routing algorithm
of CEDAR. We use bandwidth as the quality of service parameter. Tables 3 and 4 compare the
performance of CEDAR against the performance of an optimal shortest-widest path algorithm in terms
of the the path length (hops) and the maximum available bandwidth (bw) for computed routes. Tables
5 and 6 compare the accept/reject ratio for CEDAR (with and without increase/decrease waves) and
an optimal shortest-widest path algorithm.

In the third set of results, presented in Tables 7 and 8, we evaluate the performance of CEDAR for
ongoing connections upon topology change (induced by link failures and host mobility). We consider
the following parameters: (i) location of the link failure relative to the source (Relative Link Position
(RLP), (ii) number of packets sent, (iii) number of packets received, (iv) number of packets lost, (v)
number of packets re-routed and (vi) minimum delay experienced by packets in the
ow once the
source receives noti�cation about the link failure.

In all our simulations, the notation CEDARt stands for a simulation run of CEDAR at time t
(increase/decrease waves would have thus been propagated up to time t).

6.1 Performance of CEDAR in a best-e�ort service environment

We use 3 randomly generated graphs for the results in this section. The graphs are of sizes 9, 20, and
30 respectively. The signi�cant parameters for the graph - number of nodes(n), number of edges(m),
number of core nodes(C), diameter of the core(diamC), average degree (�) - are shown in the caption
of the table containing the results for that particular graph. For each graph, we measure as mentioned
above, the average path length (APL) in number of hops, message complexity for route computation
(MC), route computation time (TC) in seconds and the core node usage ratio (CU) also in number of
hops. These measurements are taken for both optimal shortest path routing and CEDAR. For CEDAR
we measure these parameters at di�erent points of time to study the impact of the propagation of ito
waves. The time d used in the tables is the constant time for which ito waves are delayed at each hop.

As can be seen from the results, CEDAR performs reasonably well before the introduction of
ito/dto waves, but converges to a near optimal performance once these waves are introduced. The
ideal value for the CU should be zero as we seek to avoid using the virtual tunnels for data
ow in
order to prevent it from becoming a bottleneck. CEDAR exhibits a low CU because we preferentially
avoid using the virtual tunnels; a virtual tunnel is chosen only if the local state at the core node
performing the route computation is inadequate to forward the probe into a farther domain towards

16

the destination.
The counter-intuitive increase in APL, MC and TC with increase in time in these simulations are

due to the fact that we are able to preferentially bypass the core nodes (as indicated by the decrease
in CU) as more topology information becomes available. Thus the results shown in Tables 1 and 2
indicate the near optimal nature of CEDAR with increase in network stability.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

"config.gnu"

Figure 2: Graph used for Performance Evaluation Simulations

Failure point Source node

time

start of transmission

link failure

new route
recomputed

source notification
received. (stop transmission)

new route recomputed
at source

packets
dropped

packets

packets
experiencing
delay due
to link failure

source
notification

first packet

(s)(u)

routed through u

last packet
routed though u

rerouted

Figure 3: E�ect of a link failure on an ongoing
ow.

6.2 Performance of QoS Routing in CEDAR

Bandwidth is the QoS parameter of interest in CEDAR. We �rst compare QoS routing in CEDAR with
an optimal shortest widest path algorithm with respect to two parameters: the available bandwidth

17

APL MC TC CU
optimal 2.4722 4.9444 0.028 N/A

CEDARt0 2.5278 5.1667 0.029 0.6389
CEDARt0+d 2.5694 5.2083 0.030 0.5972
CEDARt0+2d 2.5694 5.2083 0.030 0.5972
CEDARt0+3d 2.5694 5.2083 0.030 0.5972

APL MC TC CU
optimal 2.4316 4.8632 0.059 N/A

CEDARt0 2.5053 5.4789 0.072 0.5473
CEDARt0+d 2.6684 5.5816 0.073 0.4816
CEDARt0+2d 2.4447 5.2868 0.069 0.4816
CEDARt0+3d 2.4447 5.2868 0.069 0.4816
CEDARt0+4d 2.4447 5.2868 0.069 0.4816
CEDARt0+5d 2.4447 5.2868 0.069 0.4816

(a) (b)

Table 1: Performance of CEDAR compared to an optimal approach. (a) (n,m,C,diamC ,Avgdeg) =
(9,10,4,3,2) (b) (n,m,C,diamC ,Avgdeg) = (20,56,6,5,5)

APL MC TC CU
optimal 2.8229 5.6459 0.070 N/A

CEDARt0 3.3988 6.8241 0.084 0.2689
CEDARt0+d 3.3494 6.7298 0.083 0.1494
CEDARt0+2d 3.3471 6.7022 0.083 0.1011
CEDARt0+3d 3.4988 6.9367 0.084 0.1000
CEDARt0+4d 3.2977 6.6390 0.083 0.0931
CEDARt0+5d 3.1195 6.3931 0.080 0.0908
CEDARt0+6d 3.1034 6.3747 0.079 0.0908
CEDARt0+7d 3.1034 6.3747 0.079 0.0908

Table 2: Performance of CEDAR compared to an optimal approach. (n,m,C,diamC ,Avgdeg) =
(30,79,11,7,5)

(bw) along the computed path, and the path length (in hops). The time �eld in Tables 3 and 4
represents the time at which the QoS route request was issued. Once the route is computed, each link
locks the speci�ed amount of resources along that route before processing the next connection request.

Next, we present the improvement in the performance of CEDAR with the advent of the ito and
dto waves. We use the constant threshold approach to decide when to generate a wave. The ttl �eld in
a wave is set using a linear function (of the advertised bandwidth) and while ito waves travel from one
hop to another with a constant delay, dto waves travel are propagated from one hop to another with
no delay. The parameter we use to evaluate the performance is the accept/reject ratio for connection
requests. As can be seen, once the ito/dto waves are introduced, the performance of CEDAR is close
to that of an optimal algorithm.

time source destn bwreq hopsCEDAR bwCEDAR hopsOPT bwOPT
t0 + � 25 24 50 5 100 5 100
t0 + 2� 29 18 40 5 100 5 100
t0 + 3� 26 20 50 7 50 5 50
t0 + 4� 0 28 30 8 50 4 50
t0 + 5� 11 23 50 1 50 6 60
t0 + 6� 24 19 50 4 50 4 50
t0 + 7� 12 19 50 1 50 1 50
t0 + 8� 16 11 25 5 50 5 60
t0 + 9� 17 19 35 8 45 5 50
t0 + 10� 10 25 20 3 50 3 50

Table 3: Performance of CEDAR compared to an optimal approach. (n,m,C,diamC ,Avgdeg) =
(30,79,11,7,5) with connection results issued as shown

18

time source destn bwreq hopsCEDAR bwCEDAR hopsOPT bwOPT
t0 + � 23 11 50 1 100 1 100
t0 + 2� 11 23 50 1 50 6 100
t0 + 3� 26 18 30 4 50 4 50
t0 + 4� 16 17 50 2 50 2 50
t0 + 5� 21 24 50 1 50 2 100
t0 + 6� 11 8 60 1 100 1 100
t0 + 7� 15 17 50 2 50 2 50
t0 + 8� 12 27 80 1 100 1 100
t0 + 9� 17 10 30 5 50 4 50
t0 + 10� 26 20 50 6 50 5 50

Table 4: Performance of CEDAR compared to an optimal approach. (n,m,C,diamC ,Avgdeg) =
(30,79,11,7,5) with connection requests issued at times shown.

starttime endtime source destn bwreq acceptOPT acceptwaves acceptplain
0 2 11 23 5 yes yes yes
40 45 8 23 55 yes yes no
46 48 12 22 5 yes yes yes
49 70 5 12 15 yes yes yes
60 71 5 12 50 yes yes no
62 72 13 2 65 yes yes yes
98 99 3 2 65 yes yes no
101 110 26 11 45 yes yes yes
111 105 19 28 105 no no no
110 120 26 25 5 yes yes yes

Table 5: Performance improvement of CEDAR with the advent of ito and dto waves. The accept/reject
ratio for optimal, CEDAR with waves and CEDAR without waves are 9:1, 9:1 and 6:4 respectively.
(n,m,C,diamC ,Avgdeg) = (30,79,11,7,5).

For the results in this section, we use the 30 node graph in Figure 2 with link bandwidths ran-
domly set to either 50 units or 100 units. Note from Tables 3 and 4 that CEDAR approximates the
optimal algorithm for the scenarios simulated. Further, from Tables 5 and 6, we can see the utility
of the ito and dto waves to CEDAR. In these tables, the column headers acceptOPT , acceptwaves and
acceptplainrepresent whether the connection request was accepted in the optimal algorithm, CEDAR
with waves and CEDAR without waves respectively.

6.3 E�ect of Link Failures on Ongoing Flows in CEDAR

While the previous sets of results evaluated the performance of CEDAR in terms of generating initial
routes, we now turn our attention to the ability of CEDAR to provide seamless connectivity in ad hoc
networks inspite of the dynamics of the network topology.

The following is the sequence of events that occurs on a link failure:

� Link (u; v) fails on path from s to d.

� u sends back noti�cation to source and starts recomputation of route from u to d.

� For each subsequent packet that u receives, it drops the packet if the recomputation of the
previous step is not yet completed. Otherwise u forwards the packet along the new route with
the modi�ed source route.

19

starttime endtime source destn bwreq acceptOPT acceptwaves acceptplain
0 8 8 13 55 yes yes yes
2 25 3 13 55 yes yes yes
20 31 3 13 55 yes yes no
22 32 5 0 20 yes yes yes
28 38 6 7 16 yes yes yes
54 64 16 7 41 yes yes yes
56 64 16 4 45 yes no no
63 73 13 19 44 yes yes no
64 74 16 11 23 yes yes yes
79 79 4 9 38 yes yes yes

Table 6: Performance improvement of CEDAR with the advent of ito and dto waves. The accept/reject
ratio for optimal, CEDAR with waves and CEDAR without waves are 10:0, 9:1 and 7:3 respectively.
(n,m,C,diamC ,Avgdeg) = (30,79,11,7,5)

RLP sent recvd dropped rerouted delay

1 276 247 29 0 0.140
2 294 237 57 2 0.134
3 298 260 38 63 0.136
4 294 247 47 59 0.128
5 298 297 1 122 0.138
6 300 299 1 141 0.152

RLP sent recvd dropped rerouted delay

1 239 214 25 0 0.136
2 247 199 48 1 0.104
3 255 248 7 50 0.138
4 253 224 29 52 0.138
5 255 254 1 105 0.138
6 268 267 1 118 0.140

(a) (b)

Table 7: Performance of CEDAR's recovery mechanism on a link failure. (n,m,C,diamC ,Avgdeg) =
(30,79,11,7,5) with link failure on path for
ow from node 24 to 20 (a) input tra�c generated using
Poisson distribution (b) input tra�c generated using MMPP distribution

� Upon receiving a link failure noti�cation, s stops sending packets for that
ow immediately and
starts recomputation of the route from s to d.

� Once the recomputation of the previous step is complete, the source once again starts sending
packets for that
ow along the new route.

This sequence of events is also illustrated in Figure 3.
We again use the 30 node graph in Figure 2 for evaluating the performance of CEDAR in the

presence of link failures. For an arbitrary
ow, we bring down links that are progressively farther
away from the source and we show the impact of that link failure in terms of number of packets lost,
number of packets re-routed and delay for subsequent packets.

RLP sent recvd dropped rerouted delay

1 279 261 18 0 0.132
2 280 241 39 0 0.130
3 288 267 21 39 0.126
4 307 306 1 95 0.128
5 309 308 1 106 0.130

RLP sent recvd dropped rerouted delay

1 235 210 25 0 0.128
2 239 205 34 0 0.126
3 245 239 6 35 0.126
4 267 266 1 81 0.126
5 270 269 1 89 0.120

(a) (b)

Table 8: Performance of CEDAR's recovery mechanism on a link failure. (n,m,C,diamC ,Avgdeg) =
(30,79,11,7,5) with link failure on path for
ow from node 16 to 24 (a) input tra�c generated using
Poisson distribution (b) input tra�c generated using MMPP distribution

20

As can be observed from Tables 7 and 8, the relative location of the link failure with respect to
the source has a signi�cant impact on the above mentioned parameters. In particular,

� If the link failure is very close to the source, the recomputation time at the node before the
failure is large and hence a considerable number of packets can potentially be lost. But the
source noti�cation message, described earlier in Section 5, reaches the source almost immediately
and hence prevents a large number of packets from getting dropped.

� If the link failure is very close to the destination, the recomputation time at the node before
the failure is very small and hence very few packets get dropped. But the source noti�cation
message reaches the source with some delay and hence the number of packets that get re-routed
is large.

� If the link failure is somewhere midway between the source and destination, both mechanisms
(route recomputation and source noti�cation) fail to react fast enough to prevent loss of packets
and hence the number of packets lost and re-routed is relatively large.

For the generation of packets in a
ow, we use both Poisson and MMPP (Markov modulated
poisson process) distributions in our simulations.

7 Related Work

We present a brief survey of related work in two areas: routing in ad hoc networks, and QoS routing
in wireline networks.

7.1 Routing in ad hoc networks

Most ad hoc routing algorithms that we are aware of generously use
ooding or broadcasts for route
computation. As we have mentioned before, our experience has been that
ooding in ad hoc networks
does not work well due to the abundance of hidden and exposed stations.

The ad hoc routing algorithms in [8, 17, 18] provide a single route in response to a route query from
a source; these algorithms have low overhead but sometimes use sub-optimal and stale routes. [8] uses

ooding, in the worst case, for �nding routes. [17] considers signal strength as a metric for routing. [18]
uses additional criteria to judge routes: the relaying load, or number of existing connections passing
through an intermediate node; and location stability, as measured in associativity ticks. [2] uses a
spine structure for route computation and maintenance. It provides optimal or near optimal routes
depending upon the nature of information stored in the spine nodes, but incurs a large overhead for
state and spine management.

Previous work on tactical packet radio networks had led to many of the fundamental results in
ad hoc networks. [19] has proposed an architecture similar to the core called the linked clusterhead
architecture but it uses gateways for communication between clusterheads and does not attempt to
minimize the size of the infrastructure. [3] uses minimum-hop distance-vector routing. To extend
routing to larger networks, hierarchical routing has been proposed [20], with either distance-vector
routing [21] or link-state routing [22] used within each cluster.

Other shortest-paths routing algorithms incorporate measures of delay or congestion into the path
weights [23, 24], but these algorithms usually have some centralized computation of the delay and
congestion metrics. In a di�erent tack, neural-network-based computation is used to select routes
other than via minimum hop count with some measure of success in reducing congestion [25].

The multipath routing algorithms are more robust than the single route on demand algorithms,
at a cost of higher memory and message requirements. In [9], a source may learn of more than one

21

route to a destination, hence the routing decision is
exible and fault tolerant. The hybrid routing
algorithm in [26] combines the robustness of multipath routing with the low overhead of single route
on demand: when node mobility is high, [8] is used; when node mobility is low, [9] is used. Finally, the
temporally-ordered routing algorithm in [10] improves on [9] by using time tags to localize topology
changes.

As is apparent from our work, we have used many of the results from contemporary literature.
The notion of on-demand routing, use of stability as a metric to propagate link-state information,
clustering, and the use of cluster-heads for local state aggregation have all been proposed in previous
work in one form or the other. We believe that our contribution in this paper is to propose a unique
combination of several of these ideas in conjunction with the novel use of the core, increase/decrease
waves, core broadcast, and local state-based routing in the domain of QoS routing. Consequently, we
are able to compute good admissible routes with high probability and still adapt e�ectively with low
overhead to the dynamics of the network topology.

7.2 QoS Routing

QoS routing algorithms can be mainly classi�ed into two categories: distributed [27, 28, 29, 30, 31, 32]
and centralized [33, 34, 35, 36].

Wang and Crowcroft [27] show that if the total number of independent additive and multiplicative
QoS constraints is more than one, then the QoS routing problem is NP complete. Assuming that all
routers are using Weighted Fair Queuing scheduling, Ma and Steenkiste [28] and Pornavalai et. al. [29]
show that the relationships between various QoS parameters (bandwidth, delay, delay-jitter and bu�er
space) can be utilized to �nd QoS routes in polynomial time. Wang and Crowcroft [27] and Guerin
et. al. [30] propose shortest-widest path. A comparison of shortest-widest, widest-shortest, dynamic
alternative and the shortest distance path is presented in [28]. Salama et. al. [31] propose a distributed
algorithm for �nding delay constrained unicast routes (DCUR). The algorithm requires every node to
keep a least cost next hop and a least delay next hop corresponding to every destination. The worst
case time complexity of O(V 3) has been improved to O(V) by Sun and Langendoerfer [32]. We have
used the optimal global knowledge-based algorithm for comparison with our CEDAR algorithm.

Ma and Steenkiste [33] propose a centralized algorithm for �nding the fair share of a best e�ort

ow. The fair share of a bandwidth can be used for shortest-widest, widest-shortest or any other
algorithm for routing the best e�ort tra�c. Widyono [34] proposes a centralized Constrained Bellman
Ford (CBF) algorithm and a path merging algorithm to �nd a minimum cost source rooted tree to a
set of destinations with delay bounds. E�ects of uncertain parameters on QoS routing with end-to-end
delay requirements is discussed in [35]. For a wide class of probability distributions, Lorenz and Orda
[35] and Guerin and Orda [36] propose e�cient exact solutions to optimal delay partition problem (OP)
and a pseudo polynomial solution to optimally partitioned most probable path (OPMP). This work is
currently being applied in order to extend the CEDAR approach to support delay as a QoS parameter
in ad hoc network environments.

A simulation based study of the relationship between routing performance and the amount of
update tra�c is reported by Apostolopoulos et. al. [37].

8 Conclusion

In this paper, we have presented CEDAR, a Core-Extraction Distributed Ad hoc Routing algorithm
for providing QoS in ad hoc network environments. CEDAR has three key components: (a) the
establishment and maintenance of the core of the network for performing the route computations,
(b) propagation and use of bandwidth and stability information of links in the ad hoc network, and
(c) the QoS route computation algorithm. While the core provides an e�cient and low-overhead

22

infrastructure to perform routing and broadcasts in an ad hoc network, the increase/decrease wave
based state propagation mechanism ensures that the core nodes have the important link-state they
need for route computation without incurring the high overhead of state maintenance for dynamic
links. The QoS routing algorithm is robust and uses only local state for route computation at each
core node.

We believe that CEDAR is a robust and adaptive algorithm that reacts quickly and e�ectively
to the dynamics of the network while still approximating link-state performance for stable networks.
Our simulations show that CEDAR produces good stable admissible routes with a high probability if
such routes exist. Furthermore, CEDAR does not require high maintenance overhead even for highly
dynamic networks. Ongoing work on CEDAR is focusing on two areas. (a) While we have shown that
CEDAR is e�ective for small to medium size networks, we are working on a hierarchically clustered
version of CEDAR that can provide QoS routing in large ad hoc networks. (b) While we have only
considered bandwidth as the QoS parameter in this work, we are extending CEDAR to support delay
also as a QoS parameter.

References

[1] R. Nair, B. Rajagopalan, Hal Sandick, and Eric Crawley. A framework for QoS-based routing in
the internet. Internet Draft draft-ietf-qosr-framework-05.txt, May 1998.

[2] R. Sivakumar, B. Das, and V. Bharghavan. Spine routing in ad hoc networks. ACM/Baltzer
Cluster Computing Journal (special issue on Mobile Computing). To appear, 1998.

[3] J. Jubin and J. D. Tornow. The DARPA packet radio network protocols. Proceedings of the
IEEE, 75(1):21{32, January 1987.

[4] D. A. Hall. Tactical internet system architecture for task force XXI. In Proceedings of the Tactical
Communications Conference, Ft. Wayne, Indiana, May 1996.

[5] V. Bharghavan, S. Shenker A. Demers, and L. Zhang. MACAW: A medium access protocol for
wireless LANs. In Proceedings of ACM SIGCOMM, London, England, August 1994.

[6] Chane L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless
networks. In Proceedings of ACM SIGCOMM '97, Cannes, France, September 1997.

[7] Songwu Lu, Vaduvur Bharghavan, and Rayadurgam Srikant. Fair queuing in wireless packet
networks. In Proceedings of ACM SIGCOMM '97, Cannes, France, September 1997.

[8] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad-hoc wireless networks. In Mobile
Computing, (ed. T. Imielinski and H. Korth), Kluwer Academic Publishers, 1996.

[9] M. S. Corson and A. Ephremides. A highly adaptive distributed routing algorithm for mobile
wireless networks. ACM/Baltzer Wireless Networks Journal, 1(1):61{81, February 1995.

[10] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless
networks. In Proceedings of 1997 IEEE Conference on Computer Communications, April 1997.

[11] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. In Proceedings of ACM SIGCOMM, pages 234{244, London,
England, August 1994.

[12] S. Murthy and J. J. Garcia-Luna-Aceves. A routing protocol for packet radio networks. In
Proceedings of ACM SIGCOMM '97, Cannes, France, September 1997.

23

[13] V. Bharghavan. Performance of multiple access protocols in wireless packet networks. In Inter-
national Performance and Dependability Symposium, Durham, North Carolina, September 1998.

[14] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Technical
Report 3660, Inst. for Adv. Computer Studies, Dept. of Computer Sci., Univ. of Maryland,
College Park, June 1996.

[15] Baruch Awerbuch, Yi Du, Bilal Khan, and Yuval Shavitt. Routing through networks with topol-
ogy aggregation. In IEEE Symposium on Computers and Communications, Athens, Greece, June
1998.

[16] Qingming Ma and Peter Steenkiste. On path selection for tra�c with bandwidth guarantees.
In Proceedings of Fifth IEEE International Conference on Network Protocols, Atlanta, October
1997.

[17] R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi. Signal stability based adaptive routing
(SSA) for ad-hoc mobile networks. Technical Report UMCP-CSD:CS-TR-3646, Dept. of Com-
puter Science, Univ. of Maryland, College Park, September 1996.

[18] C.-K. Toh. A novel distributed routing protocol to support ad-hoc mobile computing. In Proceed-
ings of 15th IEEE Annual International Phoenix Conference on Computers and Communications,
pages 480{486, 1996.

[19] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design concept for reliable mobile radio
networks with frequency hopping signaling. In Proceedings of the IEEE, pages 56{73, January
1987.

[20] N. Shacham and J. Westcott. Future directions in packet radio architectures and protocols.
Proceedings of the IEEE, 75(1):83{99, January 1987.

[21] P. F. Tsuchiya. The landmark hierarchy: A new hierarchy for routing in very large networks. In
ACM SIGCOMM, pages 35{42, Stanford, California, 1988.

[22] W. T. Tsai, C. V. Ramamoorthy, W. K. Tsai, and O. Nishiguchi. An adaptive hierarchical routing
protocol. IEEE Transactions on Computers, 38(8):1059{1075, August 1989.

[23] R. L. Hamilton, Jr. and H.-C. Yu. Optimal routing in multihop packet radio networks. In
Proceedings of IEEE Conference on Computer Communications (INFOCOM), pages 389{396,
San Francisco, June 1990.

[24] D. L. Mills. Wiretap: An experimental multiple-path routing algorithm. In Computer Commu-
nications Review, volume 19, pages 85{98, January 1989.

[25] J. E. Wieselthier, C. M. Barnhart, and A. Ephremides. A neural network approach to routing in
multihop radio networks. In Proceedings of 1991 IEEE Conference on Computer Communications
(INFOCOM), pages 1074{1083, Miami, Florida, April 1991.

[26] S. Corson, J. Macker, and S. Batsell. Architectural considerations for mobile mesh networking,
May 1996.

[27] Z. Wang and J. Crowcroft. QoS routing for supporting resource reservation. IEEE Journal on
Selected Areas in Communications, 14(7):1228{1234, September 1996.

24

[28] Qingming Ma and Peter Steenkiste. Quality-of-service routing for tra�c with performance guar-
antees. In Proceedings of IFIP Fifth International Workshop on Quality of Service, pages 115{126,
New York, May 1997.

[29] C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS based routing algorithm in integrated ser-
vices packet networks. In International Conference on Network Protocols, Atlanta, USA, October
1997.

[30] Roch A. Guerin, Ariel Orda, and D. Williams. QoS routing mechanisms and OSPF extensions.
Internet Draft, draft-guerin-qos-routing-ospf-00.txt, 1996.

[31] H. F. Salama, D. S. Reeves, and Y. Viniotis. A distributed algorithm for Delay-Constrained Uni-
cast Routing. Technical Report TR-96/26, Center for Advanced Computing and Communication,
North Carolina State University, June 1996.

[32] Q. Sun and H. Langendoerfer. A new distributed routing algorithm for supporting delay-sensitive
applications. Internal Report, Institute of Operating Systems and Computer Networks, Braun-
schweig, Germany, March 1997.

[33] Qingming Ma, Peter Steenkiste, and Hui Zhang. Routing high-bandwidth tra�c in max-min fair
share networks. In Proceedings of ACM SIGCOMM, pages 206{217, Stanford, California, August
1996.

[34] Ron Widyono. The design and evaluation of routing algorithms for real-time channels. Technical
Report TR-94-024, International Computer Science Institute, Berkeley, CA, June 1994.

[35] Dean H. Lorenz and Ariel Orda. QoS routing in networks with uncertain parameters. In Proceed-
ings of IEEE Conference on Computer Communications (INFOCOM), San Francisco, California,
April 1998.

[36] Roch A. Guerin and Ariel Orda. QoS-based routing in networks with inaccurate information:
Theory and algorithms. In Proceedings of IEEE Conference on Computer Communications (IN-
FOCOM), Kobe, Japan, April 1997.

[37] George Apostolopoulos, Roch Guerin, Sanjay Kamat, and Satish K. Tripathi. Quality of service
routing: A performance perspective. In Proceedings of ACM SIGCOMM, Vancouver, Canada,
September 1998.

25

